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8 February 1960

Memo to: Individuals Holding Copies of 2591-1-H

From : J.W. Crispin, Jr.

Subject : Errata and Addenda for the Report 2591-1-H.

ft Several items, which require comment, have been detected by, or brought

to the attention of, the authors regarding the report, "A Theoretical Method for the

Calculation of the Radar Cross Sections of Aircraft and Missiles", by J. W. Crispin, Jr.,

R. F. Goodrich and K. M. Siegel (The University of Michigan Radiation Laboratory

Report No., 2591-1-H, July 1959). For the most part these items fall into the category

,. of typographical errors (both of omission and commission) but there are other points on

which additional comments are required. This memorandum is thus being written to

bring these items to the attention of all of the individuals holding copies of the report.

It is not to be concluded that this list includes all of the errata of this report. In dealing

with a report of this size it would be presumptuous to assume that all errors had been

detected; it does include, however, all items detected as of 1 February 1960.

It is the belief of the authors that at least some of the questions which might

arise in connection with this report would be answered by the inclusion of a preface

which focuses attention on the purpose, scope, and limitationit of the theoretical method

discussed. Such a preface is appended to this memorandum.



THE UNIVERSITY OF MICHIGAN

PREFACE FOR THE

REPORT NO. 2591-1-H

The radar cross section of an object is a measure of the extent to which that

object re-radiates electromagnetic energy. The value of the cross section, a,

1I depends upon the electromagnetic properties, the size, the shape, and the orien-

tation (with respect to the radar transmitter and receiver) of the object. The radar

cross section contains all the information obtainable about a distant target when using

electromagnetic energy as the probe of an experimental exploration. When the trans-

mitter and receiver are located at different places, the cross section is referred to

as being bistatiz, while if they are located in the same place the cross section is

said to be monostatic.

Given the theoretically or experimentally determined value of the radar cross

section of a particular radar target and sufficient information about the radar sets

to be used, it is then possible to predict the maximum range -at which" the target can

be observedt Also, cross section information provides a means of distinguishing

one target or class of targets from another.

The theoretical determination of the radar cross section of a body is a

relatively difficult problem. To date the "exact" solution has been obtained only for

a very few bodies of simple geometric shape; and in many of these cases numerical

results are available only for restricted ranges in aspect and body--to-wavelength

ratios. Approximate methods are available, however, for almost all bodies of simple

shape and based on this information it has proved possible to estimate the radar

ix
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cross sections of complicated shapes to a reasonable degree of accuracy and there

is a substantial body of satisfactory experimental verification of results. It is the

purpose of this report to consider this theoretical method for the estimation of the

radar cross sections of the class of complex shapes consisting of missiles and aircraft.

Radar cross sections of aircraft and missiles may, of course, be determined

by experimental means. Experimental measurements may be madu either on the

full-scale configuration or on a scaled model. These estimates of the cross section

may be obtained in a static experiment (one in which there is little or no relative

motion between the object and the transmitter and/or receiver - usualiy a 'a;ribnTatory

experiment) or in a dynamic experiment (one in which the measurements are made

during the flight of either the object itself or a scaled model). Many difficulties

plague each type of experiment and each has its limitations. For example, correct

aspect data is very difficult to obtain in a dynamic test, and it is of course obvious

that many dynamic experiments would be extremely expensive. The advantages of

controlled laboratory experiments over dynamic tests cannot be overestimated due to

the great reduction in cost, the increased precision with which aspect angles can be

determined, and the greater control which can be placed on the other environmental

factors,

However, the static experiment is also beset with difficulties and limitations;

the two most important are those of size limitations and model construction problems.

As is well known, under certain restrictions which are not serious with regard to

most missile and aircraft prcblems, if we wish to know the cross section of a given

object at a given wavelength (say ar at A,), we can obtain the desired information by

kA
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measuring the cross section of a 1/N-scale model at the wavelength A where

J: . = (1/N) kA. The experiment will yield model cross section values, say or2 (at AO,

which can be converted to "full-scale" data at A, by multiplying (r2 by Nk. Thus N

is determined by the values of k (at which information is desired) and A (at which

the experiment can be conducted). It could (and often does) happen that the value of

N will be such that the model will be too large since many of the available facilities

are such that a model whose over-all dimensions are of the order of 3 or 4 feet

*: cannot be measured.

It is also very important when examining the results of a static experiment to

determine how the object was modeled, and in comparing experimental data obtained

at two different laboratories or in comparing experimental data with theoretical

estimates one should determnine what differences existed In the models constructed.

(We shall find that the theoretical method involves what is in essence a model building

process.) Some differences in model construction would not be expected to effect cr

to any large extent; other such differences could lead to large differences in the cross

section estimates.

To obtain the radar cross section estimate by theoretical means it is expedient

to make use of techniques which are approximations based on electromagnetic theory.

One can obtain extreme precision in the results by resorting to the determination of

the exact solution to the corresponding electromagnetic theory boundary-value problem.

Unfortunately, the state of the art is such today that this can be done only on high-speed

electronic computors at great cost both in time and money. (This is true for many

simple geometrical shapes anti tUus would be even more costly ifr a complex shape.)

Xi
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The radar cross section of a complex shape can, however, be approximated

theoretically using methods and techniques which are considerably less complicated

and expensive, and it is this approach which we shall discuss in this report. If one

is interested in determining the radar cross section of an object to within 2 to 10 db,

then this theoretical approximation method is quite useful. One should not count on

obtaining results which are better than 2 db by this method, and it is worth pointing
it

out that experimental data on complex shapes usually involves a possible error of

from 1 to 2 db or more depending on the magnitude of the cross section.

It is also worth noting that it is questionable if we should even try to obtain

greater accuracies than to within 2 db (if the cost is extensive) since the variations

in two aircraft of the same model designation could easily result in changes in the

cross section (at least at some aspects) of I or 2 db or more.

This means, then, that we would concentrate on approximation methods yielding

results which can be expected to yield results of this order of accuracy. If, for ex-

ample, we are faced with a choice between two methods of approach, the first known

to yield cross section values correct to within 2 to 4 db with very little effort and the

second known to yield estimates correct to within 1 dh but with considerably more

effort, we would ordinarily use the first method. The choice between the two methods

of approach depending on the time available, and, in the estimation of the person per-

forming the analysis, the relative importance of the role played by the cross section

contribution being estimated.

Thus, in what follows we are thinking of the determination of radar cross

section to within 2 to 10 db. xrerience has indicated tbai for those cases for which

Xtt
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It is possible to compare theory with experiment a difference of less than 6 db

V' between theory and experiment is to be anticipated at most aspects.

The theoretical method for the calculation of the radar cross section of a

missile or an aircraft, which we shall discuss, consists essentially of three steps

(in what follows we assume that the over-all dimensions of the aircraft or missile

are large with respect to the wavelength):

(1) The body is considered to be an ensemble of components each of

which can be geometrically approximated by a "simple" shape in

such a way that the radar cross section of the simple shape ap-

proximates the radar cross section of the component it models.

The first step, thus, in this theoretical method consists of a geo-I: Imetrical breakdown (or model construction) of the configuration.

(2) The second step involves the calculation of the cross sections of

the simple shapes derived in step (1). This requires the applica-

tion of various approximation methods in most cases, since as

mentioned above, "exact" solutions are available only for a very

few simple shapes.

(3) The third and final step in this process involves the proper com-

bination of the '"omponent cross sections" to yield the estimate

of the cross section of the entire body.

In what follows we shall not devote much space to the first of these steps

except in Section 7 where we deal with illustrations. It should be pointed out,

xilii
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however, that this step is of prime importance and great care should be taken to

make the ensemble of simple shapes a "good" representation of the aircraft or

missile under investigation.

The third step (the combination of the component cross sections) is discussed

in Section 6 while the rerrainder of the report is devoted to the methods and techniques

to be employed in carrying out the second step.

A considerable amount of information on this subject has been published in

previous University of Michigan reports in the Studies in Radar Cross Sections series.

Unfortunately, some of this material has heretofore appeared only in classified re-

ports even though the discussions on method are unclassified. Thus for completeness

we include in some of the Appendices some of this earlier work. For example,

Appendix A consists of material previously published in Studies in Radar Cross

Sections XVII, Appendix C is taken from Studies in Radar Cross Sections V1, and

Appendix D is taken from Studies in Radar Cross Sections XVIII. Append•ix H contains

a complete list of the Radiation Laboratory reports.

We have attempted in this report to present a detailed outline of the procedure

for calculating the radar cross sections of manned aircraft and misisiles which has

evolved at the Radiation Laboratory of The University of Michigan during the past

several years. It is our intention that this report will serve as a handbook for the

calculation of such radar cross sections.

Examples of the application of this process to the determination of the radar

cross sections of various aircraft and missiles will be found In many of The University

3xv
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of Michigan reports in the Studies in Radar Cross Sections series and in the reports

which supplement that series. Since many of these documents are at present

classified we have incladed an illustrative example in Section 7; of course it would

be of considerable value to examine the details of some of these earlier computations.

A partial list of documents which contain these examples are Studies in Radar Cross

Sections XII, ••I, XV, XVII, XVIII, XIX, XX, XXI and XXIV; the documents in the

supplementary series which would be of interest in this connection are the reports

2476-1-F, 2541-1-F, 2550-1-F, 2200(011-1-T, Z500-1-T and 2660-1-F (see

Appendix K).

It is also worth poining out that the field of diffraction and scattering is

* presently getting considerable attention all over the world and that there is a continual

and heavy flow of new rewilts. This happy state of affairs, of course, means that

the method described in this report will be subject to modification and improvement

with each applicable new result.

!I
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In what folloxks we shall comment on each item %%hich has come to our attention:

1. Pa_ýge 15: The figure is obiously in error; the two tangent I pnts should

touch the surface at the shadoA boundary.

2. Page 16.' The angle S not defined prior to this pint, and xhich appears in

Equation 3. 8, is the angular separation between incident and emt-rgent direc-

tions (the angle 0 of Equation 3 '3).

3., Pe25' The first line below Equation 3 24 s'nould read ... equation (3.,24)

into equation (3. 13) shows ... n "

4.: Pae 37: Equation (4 3. 7) should read, cos ' 77 cos P -

sm;p + 2Fco~

The exp•,,nential term in equation (A. 3., e) should be

ikz' (1 sinO tan aý in2 + 2cos2P+cos .e TI 4

On the line follow, ing equation (4.3.8), correct to read

1sin0 tana + r7 cos P +cos 0,

5, Page 42: Equation (4. 4. 5) should be

Sa2 sin2 ( sin(kL cosO) (A'+ B2 )a:rsi0 cos 0 (A+

6., Page 48; In the L/ A -- 1 25 graph of Figure 4., 4-4 the vertical scale is

incorrect, being a factor of ten too large That is, the scale should run from

1) to 0. 04. (This error also appears in the reference articlb from which the

graph was taken.

2
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7. Pa:e 49: In Figure 4. 4-5 the vertical scale pertains to c/x2 rather than

for o'/ 2.

8. PaXfi3j In Figure 4. 5-4 the vertical scale is incorrect being a factor

of ten too small. That is, the range should be 0. 1 to 40 Instead of from

0. 01 to 4. [This can be noted by reference to Equation(4. 5. 16) and the curve

segment labeled (3").]

9. PsAe 65: Equation 4. 6. 3 contains a m!sprint; the factor cos 8 in the

denominator should be cos 60.

10. .Page 66 In the Znd line from bottom: replace ..... 4.6-2. with ..... 4. 6-2+

and add the following footnote:

+This figure illustrates the nature of the function F. In
application one would restrict attention to values of kL
larger than those shown. (as an addenda we append Figure
4.6-2a to this memo; in this figure F is shown for kL in
the range from 5 to 30.)

11. Page 71 In the 2nd line from the bottom of the page, replace good by

good+ and append the following footnote:

+Recall that the term "good estimate" here refers to the ability
of obtaining agreement with experiment to within 2 to 6 db.

12. pg3e 74, In Figure 4.6-6 the vertical scale Is for orear/ra:.

13. BEge7: In line 3 df Section 4. 8: replace (see Section 6.6) by (see

Section 5 of Appendix A).

3IiI
ft?



THE UNIVERSITY OF MICHIGAN

14. Page 82: In Equation (4. 11.2), (slno)N should be shinN.

In Equation (4. 11.5), the last factor In the numerator of the

left-hand member of this equation should be tan4a rather than tan'X.

15. Page 91: In the first line below Equation (5. 1.8): replace (page 14),

Ref. 15 by (page 14, Ref. 15).

16. Page 94: The text above the figure should be altered to read: " ..... small

interval for small X, that Is, for )t small In comparison to the dimensions

of the scatterer. )"

17. Page 109: In the 3rd line below the figure delete the phrase "as poin ad

out In Section I.

18. Page 139: Below Equation (8. 1), add ... (Ref. 11, page 34).

19. Page 143: In Equation (8. 2) the right-hand member should be changed to

read 2

9 C +•

In the last line replace Figure 8-3 with Figure 8.4.

After Equation (8. 2), add (see Reference 19, p. 452).

20. Page 144: The branch of the curve shown for FE -c 1 should be deleted; as

stated In Equation (8.1) the expression is only applicable for E » 1.

21. Page 147: Add the following reference:

19. ID. !. Kerr, Propagation of Short Radio Waves, McGraw-H1U

Book Company, Inc., New York, (1951).

4
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22. Page 158: The theorem stated at the bottom of the page requires additional

discussion; this addendum is enclosed.

23. Page 165: In Equation (3.5) parts of the absolute value symbols are missing

in the left-hand members.

24. Page 196: In line 5 of Section 7.1: replace .... (Ref. A-17). by

.... (Ref. A-17)*, and at the bottom of page add the following footnote:

*This material also appears as Appendix C of this report.

25. Page 197: In the 5th line from the bottom replace: ... Reference A-17

by ... Appendix C.

26. Page 213: In equation (8.24), the factors 21 should be replaced by -2.

27. Page 214-215: Tables A-1 and A-2 were obtained in 1955 and as can be seen,

the entries lack piecision. We append newer, more accurate tables kindly

supplied to us by N.A. Logan of the Lockheed Aircraft Corporation.

28. Page 240: Equation (4.8) should be corrected to read

lira F(g)
OD(0

29. Page 328: in Fig. C-20, the pattern shown in the figure is for X. - 1.25 cm

and represents the experimental pattern as given in Reference C-5.

aS
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ADDENDUM FOR THE MATERIAL

ON PAGE 158 OF 2591-1-H

The theorem stated at the bottom of page 158 is not correct. To bring this

point more clearly into focus let us concentrate on the S(HV;HV) matrix. Using

the notation employed by H. Brysk ("Measurement of the Scattering Matrix with an

Intervening Ionosphere", Communication and Electromc_ Nov. 1958) we note that

E R/Ei - S11 cosO cosa + S2 sinO sina + Sn sin(Q + a)

with ER the field measured at the receiver, E' the incident field, SCP = Sp ei'•1

the subscript "1" denoting the horizontal (H) direction, and the subscript '"2 denoting

the vertical (V) direction. LettingI Sao a0 p we then can write

ER/9i = e012 all e 11- 2 cos cos + a e sinG sin& + an sln(ofbo)

With no Intervening magneto-ionic medium 0 and a represent the polarization angles

of the transmitter and receiver respectively with H corresponding to 0 or a being

zero and V corie-qponding to 0 or a being Y/2. cr(8,a) is given by

R-•

and thus it would be possible to write

S(r8,0) K Iall ec cos cos + a s e sin0 si( + an sin(G)

+ 2 all an coso cosa sinG siw cos(oU-o.)

Note: fquation is
continued on next page.)

A-I
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+ 2 a11 a12 coos cosa sin(Oa) cos( 1 --•12)

a2. an a2 sinO sinc sin(o+a) cos(0,-0 2)]

with K a determinable constant.

Thus we see that the five cross sections listed on page 158 would give us

r(H =i Ka?

S(HV) =K a

(r (W) - K a222i

ar(AH) = K [aficos2A + ajn sin2 A + all a12 sinZA o(-02

a-(AV) = K [aL sin A + an cos2A + an a12 sin2A cos(•-oj)].

It is obvious that these cross sections will determine au, a1, a2,

cos(on -12) and cos(16-012), but cos(O, 4-)2 is not obtained. Thus, these cross

sections only determine the matrix up to an ambiguity in the phase factors. A suf-

ficient set of measurements would be (r(HH), o(HV), wr(W) and any two of the three

phases associated with these amplitudes.

It might be noted, however, that if in addition to the five cross section values

listed sbove we obtain a-(A, -A) (A # 0 and A 1 r/2) we would have

.r ¢(A, -A) -- K [a21 cos4A + a,2 sin 4A - 2 all azz cos2A sinOA c~s (011- ou from

which cos(o 1 -on) can be calculated. Since only relative phases are of Interest,

we can set • =0 and we would thus have from the above, cos5l N1, Cos$ a N2 ,

(thus sino~u Nand sin10 a /i rl iN2 ). and cos(o -on) - N3 - This means

that we would have sino11 sino = N3 - NjN2 ; we'd be able to determine if sinou and

asnon had like or unlike cigns. This would remove some of the ambiguity, but not all.
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ADDENDUM FOR PAGES 214-215 OF 2591-1-H
OD

TABLE OF f(g) eST W, (t)--

REAL f IWAG f f ARG f
-1.0 .9429 -1.9439 2.1605 295.88
- .9 .:7402 -1.8491 1.9918 291.82
- .8 .5944 -1.7297 1.8290 288.97- . 7 . 4959 -1. 5967 1. 6719 287.25
- .6 •.4338 -1. 4578 1. 5210 286.57Ir- . 5 . 3992 -1. 3180 1. 3771 286.85
- .4 . 3836 -1. 1800 1. 2408 288.01l-. 3 •.3800 -1411. 1120 299
- .2 . 3823 - .9148 . 9915 292.68
- .1 .3860 - .7901 .8793 296.040 •.3879 - . 6719 •.7758 300.O00
.1 .3855 - .5611 .6808 304.99
.2 .3776 - .4588 .5942 309.46.3 .3637 - •.3659 •.5159 314.83
.4 .3442 - .2829 .4455 320.58.5 .3198 - .2106 .3829 326.63.6 .2916 - . 1489 .3274 332.95
.7 .2610 - .0976 .2786 339.49
.8 .2292 - .0562 .2360 346.22.9 ., 1977 - •.0239 . 1991 353.09

1.0 .1673 .0002 .1673 .08
1.1 .1389 .0175 .1400 7.161.2 •.1132 •.0288 •.1168 14. 30
1.3 .0903 .0355 .0971 21.48
1.4 .0706 .0386 .0805 28.671. 5 .0539 .0390 .0665 35. 88
1.6 .0401 .0375 .0549 43.07
1.7 .0289 .0347 .0452 50.251.8 .020 .0313 .o371 57.401.9 .020 .0273 .0305 57.40

2.1 .0040 .0201 .09.04 78.662.2 .0013 .0170 .0167 85.67
z.3 .0006 .0137 .0137 92.65
2.4 .0019 , 0110 .0112 99.60
2.5 .0026 .0087 .0091 106.51
2.6 .0030 .0068 .0075 113.39
2.7 .0031 .0053 .0061 120.24
2.8 .0030 .0040 .0030 127.08
2.9 .0028 .0029 .0040 133.88
3.0 .0026 .0021 .0033 140.67

B-1
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TABLE OF ) _) 1 e i3/ e3/

REAL I IMAGI I ARG I

0 O OD OD 30.00

-. 1 3.9517 1.917 4.397 25.85

-. 2 2.289 .950 2.479 22.53

-. 3 1.747 .618 1.853 19.46

-. 4 1.485 .448 1.551 16.78

-A -. 5 1.334 .344 1.377 14.46

-. 6 1.238 .283 1.270 12.89

-. 7 1.174 .222 1.194 10.70

-. 8 1.128 .182 1.143 9.19

-. 9 1.096 .152 1.106 7. L9

-1.0 1.073 .127 1. 0w0 6.78

-1. 1 1.055 .108 1.060 5.82

-1.2 1.042 .091 1.046 5.01

-1.3 1.033 .078 1.035 4.30

-1.4 1.025 .067 1.027 3.74

-1.5 1.019 .057 1.021 3.22

-1.6 1.015 .049 1.016 2.75

-1.7 1.011 .040 1.012 2.26

-1.8 1.008 .039 1.009 2.13

-1.9 1.007 .033 1.007 1.90

-2.0 1.005 .029 1.006 1. 63

-2.1 1.004 .025 1.005 1.42

-2.2 1.004 .022 1.004 1.15

-2.3 1.003 .019 1.003 1.11

-2.4 1.002 .017 1.002 098

-2.5 1.0018 .0154 1.0020 0.88

-2.6 1.0015 .0138 1.0016 0.79

-2.7 1.0012 .0124 1.0013 0.71

-2.8 1.0010 .0111 1.0010 0.64

-2.9 1.0008 .0101 1.0008 0.58

-3.0 1.0007 .0091 1.0007 0.52

-3.1 1.0006 .0083 1.0006 0.47

-3.2 1.0004 .0076 1.0005 0.43

-3.3 1.0004 .0069 1.0004 0.40

-3.4 1.0003 .0063 1.0003 0.36

-3.5 1.0003 .0058 1.00013 0.33

-3.6 1.0002 .0053 1.0002 0.31

-3.7 1.0002 .0049 1.0002 0.28

-3.8 1.0002 .0045 1.0002 0.26

-3.9 1.0301 .0042 1.0002 0.24

-4.0 1.0001 .0039 1.0001 0.22

"B-2
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ADDENDUM FOR 2591-1-H

(page 67)

Fig. 4.6-2a: The Function F for -5 ( kL < 35

4 w [ in (
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[ INTRODUCTION

The problem of characterizing the radar properties of complex targets

is such as to forbid a precise delineation of the methods. That this obtains

will be made clear below as we point out the methods by means of examples.

We will find that, although the formal solutions are known, the application of

them to a given radar target usually leads to such complicated and involved

treatments as to render these formal solutions practically useless. What is

necessary Is to first approximate the complex target by a collection of simple

shapes, to next find appropriate methods of characterizing the radar proper-

ties of the simple shapes, and finally to recombine the simple shapes along

with their radar characteristics to give a useful radar description of the original

complex target.

We start with an outline and review of the pertinent electromagnetic

formalism. This is a necessary starting point in defining the quantities which

are used to characterize radar targets and in developing the approximate methods

used in finding these quantities. The basis of the development is Maxwell's equations

which can be found in any standard text in electromagnetic theory (Ref. 1).

In rationalized MKS units Maxwell's equations are

x EV.D 'p
at (1.1)

Vx: H BD$ v10
at

i'1



where,' E eictrlc field intensity, Hi magnetic field int.nsitN, D electric

displacemnent, B x magnetic induction, J -urren, density, and p = charge

density.

If iow we assume an harmonic time dependence of the electromagnetic

quantities of the form e these become

Vx E =iLB D=p

•Vx H = -ioD+J V B'. = 0O.

Now in an homogeneous, isotropic, and source-free legion wC have

B --

D - E (1.3)

where 1A and E are the magnetic permeability and the dielectric constant of the

medium resp,-ctively.

Substituting in equation (1. 2) and separately eliminating " and U we have

that both f and It satisfy

Vx (VP x ) (1.4)

where k2 = 0 . Since both field quantities t and It are solenoidal in a source-

free region equation (1.4) becomes

(2 +k3 ), 4' 0 . (1.5)

The conditions imposed on the electromagnetic fields at the interface of two perfect

dielectrics with unit normal An are

&a



A A1.6)

nx(H, -H 2) =0, n (BI-B 2) = 0

where the subscripts I and 2 refer to the two sides of the interface. In the case

of a perfectly conducting surface the conditions are

A --&

nEB 0

In our determination of the radar characteristics of the various targets we take

"them to be illuminated by a plane wave. This is no essential restriction on the

so,,rce of illumination since an arbitrary source can be expressed in every case

as some combination of plane waves. Assuming an incident plane wave we have

that the field quantities are of the form

S+$ (1.8)

V where ip is one of the vector fields satisfying Maxwell's equations and the

boundary conditions, 00 is the incident plane wave, and 0s is the scattered

field.

The problem is now specified except for t0 * havior of the -fields at

infinity, the radiation condition. This condition is equivalent to the physical

requirement that the scattered field behave as outgoing or diverging waves at

large distances from the scattering surface. Moreover, it is a mathematical

requirement that the solution be specified uniquely. We state it in the form

(Ref. 2) IA
Urm IDx(Vx aD)-ik@i dS 0 (1.9)

r--- r
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where' r is the diIstance from the origin of the fixed reference frame to an

enveloping sphere Sr of radius r.
r

The above formulation of the p :lem, in terms of a differential equation

and boundar" condition, leads to an in'•gral equation formulation making use of

a Green's function. To show this we consider first a scalar problem. Let IP

satisfy2 (V 2+k )2 = 0 
(1.10)

and the boundary conditions

r , f
-an (1.11)

ort a finite closed surface S. Let the source of radiation be surrounded by a

small ephere SO and let the entire region be bounded by a large sphere SW D

Then, in general

() =-f~QP(r ) 'G (-'r•)- G(r',r•) -P i(•')) dS (1.12)an 
an

where G is the free space Green's function

41 e (1.13)

is the outward normal derivative and the integration is over the boundingan

surfaces, So, :mnd SO. The integration over So vanishes by virtue of the

requirement that 4 satisfy the radiation condition and the integration over SO

gives the incident wave. Therefore

1PC)( - *o 6r) + f (f gG) dS . (1.14)
4 s ani 4
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In the case of the vector electromagnetic fields we get "he similar

a expressions

E f[ V G x(f x A dS -~ vxf(V G (itx 9)dSik

8 (1.15)

H f VG x(H x n)] dS+±V x f [V Ex
ik

S

) If the scattering surface is perfectly conducting the boundary conditions require
A ")

tnxE = 0 on S . (1.16)

In addition we can recognize the surface current density as

-A A -&
K -- nxH on S . (1.17)

These reduce the equations (1.15)

E am E -LV
0 i k f V G±xVR& dS

s (1.18)

H =i H o- VGxK dS

S

To put the second of equations (1.18) in the form usually considered we

note that for r very large,
ikr A -ikf.

VG e- kr e (1.19)
4rr

where kf kr; hence.

ikr -k r
H O e x) dS. (1.20)

4rr

The scattered field is

e1kr
HS - e-rJ (n' xI dS. (1.21)

Is
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The electromagnetic fields are not physically measurable quantities [
as such. A physical measurement can be made of such things as distances,

times, and energies. Hence, we are led to characterize the properties of

a radar target in terms of the radar cross section which is a measure of the

energy scattered from the target. Precisely, the radar cross section is

defined as

2

o(O•)= im 41 r2 ---- •

or 

r-*o

ao(e, i) rn 47z r2 _E (8, (1.22)
r--ou J Eo

where H or E are the scattered fields propagating in the direction given by5 5

the angles (6, P) and E or H0 are the strengths of the incident fields.

There is a class of problems which are soluble by means of separation

of vwriable. These are those for which the operator in equation (1. 5), V 2 + k2,

is separable in some coordinate system such that the scattering surface is a

coordinate surface. We refer to these as separable problems. The solutions

then appear as a series of the special functions of mathematical physics. The

usefulness of this approach is restricted by two considerations: First the

special functions are not sufficiently tabulated in all cases and second the

series solution may be too slowly convergent. In fact, only in the case of the

sphere has this approach received much attention.



Although we will make little use of these separable solutions in

characterizing the radar properties of complex targets we will briefly

consider one such solution, the sphere. We will use this solution as a

starting point for considering the various approximation methods which will

be used for more general shapes.

To motivate this consideration of the sphere solution we repeat the

point made above: After the resolution of a complex radar target into a

number of simple shapes we need a way of deciding what approximate methods

are appropriate to finding the radar properties of the simple shapes. For a

given orientation of the simple target and polarization of the radiation this

decision, in most cases, is made after comparing certain "characteristic

dimensions" of the target with the wavelength of the radiation. Since the

behavior of the sphere as a radar target is invariant under rotations and

Ssince it has a single dimension, the radius, we first consider this simplest

case.

47
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2

THE SPHERE

We take the harmonic series solution for the scattering of a plane

electromagnetic wave by a perfectly conducting sphere. This solution, first

given by Mie (Ref. 3), is expressed in spherical coordinates. We take the

incident plane wave directed along the axis { = 0, the z-axis, and polarized

with the electric vector along • = 0, the x-axis. With a perfectly conducting

sphere of radius a at the origin the scattered field at any point (r, 0, f)) in

space is given by

Eg - 0 co~~(i)n I k) h(1kkr)p(co)

nn(n+) h (ka) nsin8

-i [kajn(ka)]' [krh0) (kr)] d P(I)(coso)
[ka h0l) (ka)] kr do n

n

(2.1)

OD.

2nO nin 0 -k-k) kr) Ad P (cose)
1 n(n+l) h(-)(ka) n dq n~

-- .)(ka)] [krhý (kr)
[kahs)(ka)] kr sinnO

I',
C. . . . . . . .I.'•' • •I



where E. is the amplitude of the incident field, in and h) are the spherical

Bessel and Hankei functions respectively, and P(I) is an associated Legendre

function. The primes denote differentiation with respect to the argument of

the functions. The far field form of this solution is found by using the

asymptotic form

(i)n+1 ikr-
hl) (kr) = (-i) ei_

kr

in equations (Z. 1), retaining terms of order -L ,r

O D 01 Jn (( (cose)
EO iEo os •. Zn+l in kn

1 n(n+1) hi (ka) sin&

[ka in (ka)] d_ 1 (O

[ka.h (1) (ka)] dO n cs9

(zz

E = E siikr D- _n (ka) d o (1)__
krn(n+1) TM 7 dO ~(o6

r()
Lica Jn (ka)j P (')cosO)Pn (cosO)

[kah (1)(a)]' sinO

The limitation on this representation of the sphere solution is the rate

of convergence of the series as a function of the parameter ka. This parameter,

in the case of the sphere, gives the comparison of the characteristic dimension

of the sphere, the radius a. with the wavelength X- --. Hence. a study of

U) ~9 N



various approximations to the solution and the validity of these approximations

as a function of ka will serve as an introduction to the consideration of more

complicated shapes and the approximation of their behavior as radar targets.

First we make the restriction ka<<l; i.e., we consider spheres which

are very small compared with the wavelength. On examining the terms in the

series of equation (2.2) we see that since

Jn(ka) = n n!l (ka)n +O(ka)n+2]

(2.3)

hi() (ka)-- i (2n) (ka) -n-+ 0[(-n-3jSn 2 n n'

only the first order terms need be considered for ka sufficiently small. In

this approximation the fields (2.2) become

s ~ikr3

E -r Eo coso k- a (cote -)E0 r

(2.4)

E - e ikr Eo sino k2 a3 ( 1 -cs5)
r 2

and the radar cross section is

(r = 4r (k2 3a2) (coso - 21 -2 I osO) sin2 p 5)

On examining the way the pIarameters enter the expression for the

cross section we see that we can rewrite equation (2. 5) as

32V 2 k47 cose) col 7 0) sin2 J (2.6)

10



where V is the volume of the scatterer. This is characteristic of the large

wavelength or Rayleigh approximation: The cross section is proportional to

the volume squared and inversely proportional to the fourth power of the

wavelength.

The physical content of this result is essentially that our probe, the

electromagnetic radiation of large wavelength, is not fine enough to sense more

than the over-all size of the target, the volume. This result also obtains for

4~ other shaped targets so long as they are sufficiently small (Ref. 4). Quite

generally we have in the Rayleigh region for backscattering

ar = 4 k4 V2 f(a,b,...) (Z.7)

where f is a correction factor taking into account a more detailed description

of the target, a,b,..., being the parameters describing the shape of the target.

We can continue this process, computing the higher magnetic and

electric multipole monmnts. The resulting series of multipole moments would

be precisely the series of equation (2. 1). This important observation leads us

to point out that generally the radiation from the excitation of any target can be

considered as arising from a collection of electric and magnietic Multipoles.

As in the case of the sphere, as the wavelength of tie radiatioun becomes smaller

with respect to certain characteristic dimensions of the target, the more

muitipoles o•re necessary to characterize the target.

In the high frequency region for the sphere, ka>> 1, the rate of

conveegence of the series (Z. 1) is so slow as to make this representation of

'* 11
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the' solution inappropriate. There is an alternative formulation making use

of the Watson transform (Ref. 5), however, we will approach the problem in

a more generally applicable, although approximate, way.

lb
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S~PHYSICAL OPTICS APPROXIMATION

Substituting (1. 13) and (1. 17) into (1.18) the following expression for

the scattered field is obtained

(^n- 1 (x)x e dS

s 4w R "
4S

If the field induced on the directly illuminated portion of the surface by the incident

radiation is taken to be approximately the geometrical optics field the scattered

field can be approximated. By this we mean that, at a given point on the

geometrically illuminated part of the sphere, the field Is approximately

that which would be induced in the limit ka -. oD. This is also the field

which would be induced on an infinite plane tangent to the sphere at the

point in question which, after an elementary consideration,is found to be

twice the tangential component of the incident magnetic field on the geometri-

cally illuminated side of the sphere and zero in the shadow.

Equation (3. 1) is then rewritten

-4 i
ikR

i . 1 (•xU )x e -dS, (3.:
s 47 GO R

iiuminated
side

where !G 2 HI with i1 the tangential component of the incident field.

GO

The cross section in this approximation is

13
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o O{ka )2 sin 3 cos f3 J (ka sin0 sin;?)
wa2

0 (3. 3)

ika (1 + cos 0) cos,3
e dý3

where 6 is the angular separation of the incident and emergent airection. For

backscattering this reduces to the simpler expression

-!(0) sin 2ka 1 - cos 2ka (3.)
-- 2 ka (ka)2

where we note that the leading term is just the geometrical optics result.

In the above we have made no special use of the fact that the phb sical

"optics method was applied to a sphere. The only requirement was that the

surface be able to be locally approximated by a plane for the purpose of

finding the field on the surface. Hence, we suggest that the method of phys-

ical optics is more generally applicable. The important reservation in its

application can be seen from a comparison of the results of summing the

series (2. 1) computing the cross section for backscattering and comparing it

with the result (3.4). As ka increases both the exact solution and the physical

optics solution oscillate about the geometrical optics value but the oscilla-

tions are not the same. From this we conclude that physical optics can be

used to approximate the magnitude, although no better than genmetrical

optics, but can give no information about the oscillations about the geometrical

optics value.

4, 14
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We start \kith equation (3.2) and consider the physical optics approxima-

tion to tLhe field scattered by a perfectly conducting surface S. Let the incident

field be given by

l H 9 e .(3.5)

1 0

We now divide the surface S into the geometrically illuminated side S1, and

the shadowed side, S2 (Figure 3-1) by means of the shadow curve k * n 0

where k is the unit vector in the direction of propagation of the incident wave

and ^n is the normal to S.

S.,,.

Vshadow curve

incident wavefront

FIG. 3-1

"The geometric optics current is given by

2A xl., onS 1

K (3.6)
GO 0 on S2

If it is the position vector of the field point and V the position vector of a

surface element of Sthe gradient of the Green's function in the far field

15



approximation can be % ritten as

ikR 1kr -iikf --r'
eV e A f (3.7)

4w R 4w r

'khere R - and kf = kr. SubstiLuting in (3.5)

, ikr A - ikf r/ ikr
H e (i xi ) x r e dS= e F( 3) , (3.8)*

s 2w r 1 r

where

- - (. )-(.f A.

.t- 27

and

A A

f n e dS. (3.10)
S' .

Hence, the radar cross section is given by

a2j (3.11)a 0)4 I
If we take into account the polarization of the receiver, we can define an
effective cross section,

W cU) 4s (3.12)e

A
where d is a unit vector in the direction of the receiver polarization.

,where S' refers to the illuminated portion of the surface.

S16



A A
In the simpler case of backscattering we have r -k and

a - x (3.13)

* where

AC 2S-.io
g =k n e dS. (3.14)

SATo simplify the discussion we orient the coordinate system such that k z,

then

g n e 2ikzd. (3.15)

But we note that nz dS is just the projection of the elementary area dS on a

plane perpendicular to the direction of incidence and we write

Sn dS = ' dz.°

8z"

Finally

g - e2 kz' 2S dz' (3.16)
az,

or more generally

u ! e2ikp

g ,e (A d (3.17)
S8ap

where p is the distance measured in the direction of incidence and A is the

area of the projection of the part of the scatterer to one side of a plane of

constant p (the side indicated by arrows in Figure 3-2). the projectioa being

17



S- Plane of Constant p ij

Shadow Region

T)irection of
Incidence

illuminated Shadow Curve

FIG., 3-2: THE SHADOW CURVE (GENERAL)

Smade onto the plane of constant p. From equation (3.17) we see that physical optics

predicts no dependence of monostatic cross section on polarization (at least the form

of physical optics which we are using here). Equation (3.17) may be interpreted as

saying that each element ol area makes a contribution to g, but with a phase factor

ek so that two contributions may either add or cancel depending on their relative

phases.

As an example of ph3 sical optics we will again consider the cross secticn

of a sphere. For the sphere m Figure 3-3 the area function is

0 (p \< -a)

A (a ) (-a \< P 0) (3.18)
2

,a (o \0 p)

tP

Direction of Incidence

FIG. 3-3: SHADOW CURVE (SPHERE)

"18
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From equation (3.18) we find:

0 (p -a)

4A - -2v p (-a, p \ 0) (3.19)dp

0 (o ( p)

The variation of A and dA/ dp with p is shown in Figure 3-4. For short
' 2ikp

wavelengths, k is large and e oscillates very rapidly (that is its real

and imaginary parts oscillate very rapidly). As a result, whenever dA/dp

A dA
Sdp

Sa2  2ura

-a zP -a

FIG. 3-C A AND dA/dp - I

varies slowly the contributions for values of p differing by X/4 will nearly

cancel. Only the regions where dA/ dp changes rapidly will contribute

appreciably to the integral. From Fig. 3-4 it is clear that the main

contribution comes from p a- . For this particular problem the integral

can be evaluated exactly; so, let us see whether the above ideas agree with

the exact solution. We have
0

•* • e-21kar a e2-kp (-2O) 4O ÷ i - 1) + (3.20)

k 21?

* 19



-2ika
The terms having an e factor can be interpreted as the contribu-

tion from p = o. With this interpretation we see that the contributions from

the intermediate region have cancelled each other. For large k the term,

via e ika dominates the others. This term is due to the jump in dA/ dp
k

at p = -a. The other two terms are due to the discontinuity in deA at p =-a
2

and at p = 0. According to the interpretation used here we should find that

another area function for which dA/dp has a jump of 2wa at p--a but is

otherwise continuous (varying but little in a distance of a wavelength) should

give the same result (for large k). For example, suppose that as in (Fig. 3-5)

(p <-a)

A and dA ,(3.21)

dpp

2vra -e lo+a 2rae 10 >la) (P>vR

A dA

FIG. 3-5: A AND dA/dp - II

then we can again evaluate g exactly with the result

OD

21kp -'(p+ a) via -21ka
g e 2rae d ia e (3.22)

-a k + 2
2, 20



For large k, equations (3. 20) and (3. 22) are in agreement so that the inter-

pretation which we have been using seems to be accurate.

There is another way of looking at the physical optics integral which

can be very illuminating. If, for the sphere problem, we let

P* 2Ikz
f(p) = 21e (-2irz) dz, then g = f(O).

4 1-a

t,

-4 Now f(p) is a complex number and as p varieb from -a, to 0, f(p) traces out

a curve in the complex plane. This curve is called a vibration curve. The

vibration curve is the limiting form of a vibration polygon obtained by

replacing the integral in equation (3.17) by an approximating sum

n'e (-:)nAZ

The individual terms in this series can be looked on as little vectors in the

complex plane which add up as shown in Figure 3-6. The magnitude of each

vector is A zn, and the vector points in a direction making an

angle 2kzn with the real axis. If we take a constant value of Az then the
II

angle which the resultant vectors make with the real axis will increase

S~dA
steadily. If -• is constant then the vectors will go around a circle of

radius Lk & I f varies slowly then the vibration curve will

21
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spiral about a relatively fixed point with a slowly changing radius. However

each time - has a discontinuity the point about which the vibration curve
dz

is spiraling will jump proportionately. For the sphere, the vibration curve

will appear roughly as in Figuire 3-7. It can be seen that the spiral ends
-2 ika

at approximately the original center of curvature which is I e .

k

As a second example of a vibration curve, let us take an area function for

which dA has two jump discontinuities as shown in Figure 3-8. In this case
dp

the vibration curve will take the form shown in Figure 3-9.

e 21knn CLAn /

FIG. 3-6: VIBRATION CURVE - I

This can be analyzed as follows: at p = 0 the center of the vibration spiral

is shifted to the point A (Fig. 3-10) and the spiral follows the large circle.

The radius of the circle slowly decreases until the spiral is following the small

circle. At the second discontinuity the center is again shifted, this time, to

the point B. The center of the spiral ends at the same place as the spiral

itself. Thus by tracing the motion of the center of the spiral we can find the

value of the integral. In more complicated cases this can be quite a useful

aid to our thinking.

ZZ



<- -

ICI

-2ika

f(-a)

FIG. 3-7: VIBRATION CURVE - II FIG. 3-8: dA/ dp HAVING TWO
JUMP DISCONTINUITIES

FIG. 3-9: VIBRATION CURVE -M FIG. 3-10: SHIFT IN CENTER OF
VIBRATION SPIRAL

23



If d behaves in the same manner for two bodies then the physical
* dp

optics cross section for the two bodies will be nearly equal. We have seen that

bodies like the sphere which have finite radii oi curvature will have a dp

which has a jump where the incident field first hits the body and then goes

smoothly to zero. At the point at which the incident wave first hits such a

smooth body we can approximate the body by a paraboloid having the same

principle radii of curvature. Once we have found the cross section for such a

paraboloid we will have an approximate cross section for all such smooth

bodies. We take the equation of the paraboloid (Fig. 3-11) to be

2 y2
p = + (3.23)

2R, 2R2

FIG. 3-11: THE PARABOLOID

where R1 and R2 are principle radii of curvature at the point (0, J, 0) where

the incident wave first hits the paraboloid. The area function is

SA UP -PkR (P o1 0.

Thus

4 i24



c 2A R2 j (p > 0).

dp

This does not go to zero for large p but we can m3dify the body very slightly

so that
dA = 21r V R e -O•p (p >.* 0)
dp

where j3 is very small. We then have

g e 21 r U -'I e-ýP dp -- ) ri Vý (3.24)
J-)0 k

0

Substitution of equation (3.24) into equation (3.17) shows that the approximate

cross section of a smooth body is

a =7RR2(3.25)

where R, and P 2 are the principle radii of curvature at the specular reflection

point. This formula was obtained by assuming k large so that the return was

essentially from the specular reflection point. Hence the same result could be

obtained alternatively by using geometric optics. As a result this formula for

a is often called the geometric optics formula for a.

Equation (3.25) is one of the most useful cross section formulas due

to its extreme simplicity. It is convenient for applications to have a few

formulas giving R, and R 2 .

If the equation of the surface is given in the form z f,4 y) then

(1+f 2 + f2 )2

R R =x (3.26)

yy NY
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If the equation of the surface is given in the form F(x, y, z) = 0, then

(F2 + F2 + F2 )2

FRX 2z (3.27)
A

Fx Fy Fx Fx

F F F F
xy yy yz y

Fxz Fyz Fzz Fz

Fx Fy Fz 0

If the equation of the surface is given parametrically as x = x(u, v),

y zy (u, v), z =z (u, v) then

. R (EG- (3.28)

LN -M
2

2 2 Z22

E-x2 + y +z F=xu xv-yuyv +z z, G x2 + Y2 + z2
U U U V U V V v

XUU XU XV XUV XU xV Xw U XV

L Yuu Yu Yv M Y uv YU Yv N z YvV YU Yv

zu zu v zu LuLv zv zu LUU U V v UV u V W U V

For a body of revolution given by the equation p p (z) (Fig. 3-12) we have

P (3.29)

p" sin4 a
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I where a is the angle between the direction of incidence and the axis of the

I body. p and p" must, of course, be evaluated at the specular reflection point.

i Direction of

incidence

p -(x2 + y2 )1/2

Zi4 II
I z1

5. I

-' I

FIG. 3-12: A BODY OF REVOLUTION

In manty cases in determining the cross section of a simple shape we

* find that there is one expression for "normal" incidence and a second expres-

sion for the cross section at "non-normal" incidence. In these cases the cross

section (for short wavelengths) is much larger at normal incidence than at

non-normal aspects. When the actual vable of the cross section at the

non-normal aspects can be neglected, we might use, instead of the non-normal

incidence formulas, an expression giving the width of the peak. To obtain

such peak width formulas we require that the sum of the non-normal cross

section contributions be equal to the desired fraction of the normal incidence

value; such expressions are presented in Section 4. 11.

I
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MONOSTATIC CROSS SECTION OF SIMPLE SHAPES

4. 1 Introduction

In the preceding section we have Dresented in some detail the methods

to be employed in obtaining expressions for the radar cross sections of simple

shapes. Here in Section 4 we shall concentrate on the simple shape configura-

tions; i.e., ellipsoids, elliptic cones, cylinders, and thin wires, tori and

wire loops, the ogive, flat plates, the tapered wedge, corner reflectors (and

multiple scattering in general), and the paraboloid. These discussions will be

devoted primarily to the optics region.

4.2 The Ellipsoid

The ellipsoid has been found to be extremely useful in modeling parts

of aircraft and missiles. Ellipsoids of various dimensions model quite well

such components as the fuselage, the engine nacelles, the wing tanks, and the

wing tips. In most instances it is portions of prolate spheroids which are of

the greatest use and thus we shall concentrate on the prolate spheroid.

The equation of the ellipsoid can be taken to be

+ (-r)'+ (--)*= 1(4.2.1)

and the coordinate system employed is shown in Figure 4.2-1.

In the case of vanishingly small wavelengths we obtain, through the use

of equations (3.Z5) and (3.27),the foliowing expressions for the monostatic

cross section:

28
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z

To Radar

7 x

FIG. 4.2-1: THE COORDINATE SYSTEM USED IN THE ELLIPSOID ANALYSIS

For the general ellipsoid

= a2 b2 c2

2 22 2 2 (4.2.2)

(a sin9 cos2 + b2sin0 9sino + c2 cos 29)

For the prolate spheroid (a = b)

- rb 4 c (4.2.3)
(b2 sin20 + c2 cos 20)2

For the sphere (a = b - c)
2

r = I a 2 (4.2.4)

For larger wavelengths, still in the optics region, the application of

equation (3.17) to the prolate spheroid problem for the case of 0 00 yields

c00) (b sin_ kc) 1-cos(2kc)
(°) - ( ) (I+- kc 2 c) (4.2.5)

In the Rayleigh region we can employ the methods presented in

Appendix B for incidence along the major axis.
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In th. i rs,,nnc, region the me.thods of Appendix B ar(. applicable, but

we should c:dl atttntion to t2e' work which has been done on theb sphere and the

prolate sphc roid whose ratio of major to minor axis is 10:1. A summary of

the work performed on the sphere is presented in Reference 6 and the efforts

expended on the 10:1 prolate spheroid are documented in References 7 and 8.

The radar cross section pattt rns for the sphere and the 10:1 prolate spheroid

`n the, resonance region (for incidence along the axis of revolution) are presented

in Figure 4.2-2.

The above enables us to obtain good estimates of the radar cross section

contributions from ellipsoids used in modeling portions of aircraft ana missiles

over almost the entire range of wavelength-to-body dimension ratios.

As an aid in the application of equation (4'.2.3) we present in Figures

4,1`-3 and 4.2-4 graphical presentations of the cross section of a prolate

spheroid for various values of the length-to-width ratio, . Figure 4.2-3
C

shows the way in which the cross section at 6 = 00 varies with the ratio

c (10 < q<( 15) for a fixed value of the sernu -minor axis, b. Figure 4.2-4
T, "b

gives the ratio of a'(9) to (Y(0) as a function of 0 for various values of b . The
C

"upper bound" to this ratio (obtained by setting _b = 0) is extremely useful in
C

deciding whether or not an aircraft component so modeled will contribute

significantly,

It if, of interest to compare the results obtained through the application

of equation (4, Z. 2) with some recent experimental data on oblate spheroids
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FIG. 4.Z2-2 CROSS SECTIONS OF THE SPHERE AND THE 10:1

PROLATE SPHEROID IN THE RESONANCE REGION
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FIG. 4.2-3: RADAR CROSS SECTION OF A PROLATE SPHEROID
(OPTICS) - THE NOSE-ON CROSS SECTION AS A
FUNCTION OF THE LENGTH-TO-WIDTH RATIO

(see equation (4.2.3))
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obtained at the University of California (Elect. Res. Lab., Quarterly Progress

Report, 1 April - 30 June 1958; Series No. 60, Issue No. 21; 15 July 1958). In

terms of the notation of equation (4.2.2), the experimental parameters were

a = b = b2, c/X = 1.5, 1.0, 0.75, 0.50, and 0.25. The aspect can be defined

by taking 0 = 900 and • = 00. In the experiment, which was conducted at 9340 Mc,

the incident electric field was polarized along the minor axis and a three-inch

)
diameter spherc was used as a standard. The results of the experimc it and

the theoretical value of cross section (compared to the return from the sphere)

are shown in the following table:

RADAR CROSS SECTION OF OBLATE SPHEROIDS - THEORY AND EXPERIMENT
(in db above the return from a 3" diameter sphere)

a, b e Cross Section
Experimental Theoretical

Measured Ave.

Z) 1.5 X 3.7

4.2 3.2 1
2.7
3.3

2X 1.0 X -0.2
0 0 -. 8
0.2

2X 0.75X -3.4

-4.3 -4.2 -4.0
-4.0
-4.2'

2X, 0. 50)L -9.6

-10.0 -10.2 -7.5

-10.6
2X 0. 25X -15.0

-14.2 -14.5 -13.6
-14.7
-14.4
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4.3 The Truncated Elliptc Cone*

The truncated elliptic cone has proved to be very useful in modeling

wing surfaces and portions of fuselage surfaces. The truncated cone is placed

in the coordinate system shown in Figure 4.3-1; the cone is assumed to be

truncated by the planes z = L, and z = L2 with L2 > L1. The half-angle of the

cone in the xz-plane is taken to be a (i. e. tana = -a ). The ratio of a to b is

given by 77 and the direction to the transmitter-receiver is specified as shown

in Figure 4.2-1. The equation of the cone is taken as

x 2 = + yj 2 y,2 = 2tan2a (4.3.1)

with a__a z
b

-4/,-'
\'I I
'I I!

\I I!
- \I

FIG. 4.3-1: THE TRUNCATED ELLIPTIC CONE

See Appendix B for a discussion of the finite cone at the nose-on aspect.
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This can be written in the parametric form

X' = Z' tanacosp1

y' = (-)tanasino' (4.3.2)

Z, = Z1.

A small displacement on the surface can be written as

A A A
ds dx' ix +dy'i + dz' iz =

4> A ~ 1.A A
(tan a Co i + tanyin 1-+ i ) dz? +

xY
17

(-sin + Icos .) z'tan do . (4.3.3)

The surface area element is (from equation 4. 3. 3)

[9-sinPIix + cosP' I%) z' tana dP' x

aBtan a cos P, A+1yA (4.3.4)
I tano'sinp"l' +Pr)dz

z' tana( C O +' 31n -y ' if ) do, ,.

The projection of this on the direction of incidence is

(COS PA , tano a 4dA =V tana do' dz' x + sin )j)-

(sinScosfx +sine cosp ^ +cos 4 .z5x 1 y(4.3.5)

= z'tanoadp'dz'(- sin cos1cosp'+ sinOsinpsinp'-#cosOtana)

where the polar angles 0 and 0 are shown in Figure 4.2-1. The phase factor

on the surface is

e~ik _ exp. 213(smnO coso , + sinG sin• y + Cos f.)(XGx+ y

- exp. -2'kz(sin0 comop tanacosp' + -sinG intanasinp'+cos J

(4.3.6)
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The physical optics integral is g = feZikp dA. There is a stationary

phase point at (the other stationary phase point is not on the illuminated side

of the cone)

0 (sine coso tan a coso' + L sine sino tan a sino' + eose)
1T

- sine tan a (-cosp sino' + -L sino coso") = 0
77

1 or

=si' sin ; cosW' - cos(
j, Vsn 2 + e cos2  2 -in + 77 coslo (4.3.7)

Evaluation of the integration with respect to 0 by the method of

stationary phase gives

gL2 T e -a a o t n )
k sinG Of2le7 17cB tna

L,S" (4.3.8)

x ( -zikz'(-Lsine tana sin2 • + 1J Cos2 • ÷ cosO)
e dz" .

Unless the factor I sine tan a sin2o + 12 cosZ + cosO is nearly zero
17

(normal incidence) we may integrate this by parts and neglect the new integral

compared with the constant terms (this is a way of evaluating the two contri-

butions which come from the points z L, a nd z La) to obtain

Sg ,, -rT z'tana. sine .. I cose tan
~' sin8ViO+~ C1l+7Zodt1

(-21]& 1inO tn c! yi-nT +7jci9O+ coo).-, (4.3.9)

-21k ( 7 sin G tan _' re O • 17' ',cos o , s , ) ,
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Evaluation at the, t\%o limits gives the two co~ntributions to the cross

section. At normnal incidnCc' th. phase factor is a constant and equation (4.3.8)

integrates to give:
3/2 3/2

g 2(L2  -L, ksn- ~ ~ o0( sn Io, Vn asin- cos0 tan .3 ks, n0 }/i + I2cosZ• C-in2 _ ,S2 co20

(4.3. 10)

From the above we obtain expressions for the cross section which are

applicable only for sinO >% sina. At normal incidence the cross section is given
b 8 3/2 3/2)2

T(L 2  _Li ) tana (4.3.11)

9A.77 2 1cos301

where normal incidence is defined to be the direction given by

tan0 = - _ __(4.3,12)

tana VYsin 2o + 172 cos2 0

For non-normal incidence there are two independent scatterers, the

ends -f Vie cone. If one of the ends of the cone is smoothly rounded then at

non-normal incidence its contribution would have to be computed by means of

a formula for the rounded end (for example the ellipsoid formula). The two

contributions are given by

___ __sinO - lcos9tana

SX L 7l3 tana Sin8 -1

8z sin s-in + sinO tan ac + 177 cos2 + Tcos

(4.3.13)

where L has the value L, or L2 depending on whether the contribution is from

the small end or the large end of the cone.i
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For the truncated circular cone ( 17 1), equations (4.3. 11) and (4.3. 12)

become _
o- = 89r L2 -__o _ (4.3.14)

and

S= A[ Ltan a tan2 (0__a) (4.3.15)
8 ir sine

A graphical presentation of equation (4.3.14) is given in Figure 4.3.2 and a

graphical pra,;entation of the relation between normal aspect to a cone and the

angles a, 0, and 0 is given in Figure 4.3.3.

4.4 The Cylinder and the Thin Wire

The cylinder has proved to be very useful in modeling portions of a

fuselage, a wing tank, an engine nacelle, etc. Very thin cylinders, that is

"circular cylinders whose radii are very small in comparison with the wavelength,

have been extremely useful in modeling the sharp edges of some wing surfaces;

these very thin cylinders are referred to here as thin wires.

For the case in which the wavelength is small in comparison with both the

length and the radius of the cylinder, the cross section formulas can be obtained

as limiting cases of the results obtained for the truncated eUiptic cone (i.e.,

equations (4.3.11) and (4.3.13) ). To accomplish this let tana= a L 1 L2 -L,

L2L2 .. c. The results obtained are for the cylinder at normal incidence (8 = 900)

, T, (4.4.1)2 2+ 2Sn'p] 3/2
*X.a cos2 • +b2 s i

SI 3
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a (in degrees)

FIG. 4.3-Z: CROSS SECTION OF A TRUNCATED CIRCULAR CONE AT NORMAL

ASPECT AS A FUNCT 1I7ON OF THE HALF-ANGLE a
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-tan tana 
17

sinZ• + 12 cos2o

2.0-
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I, 
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FIG. 4.3-3: NORMAL ASPECT TO A TRUNCATED ELLIPTIC CONE - RELATIOI%

BETWEEN THE ASPECT ANGLES 0 AND • AND THE CONE ANGLE a
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f and for non-normal incidence we have two components (assuming that the ends

are not rounded or smoothed in any manner) each equal to

C. X 42 b2 sinO (4.4.2)
87r cos2 O[a2cos2 + b2sin20] 3/2

For a circular cylinder these expressions reduce to

'r 27 r•a (4.4.3)

and

C. Xasin0 (4.4.4)
8ir cos2 e

respectively.

The application of equation (3.17) will yield an expression for the

cross section at the off-normal aspects which incorporates the phase between

the contributions from the two ends of the cylinder. The ex'ression is more

complicated and not so convenient to apply as those given above, but if knowledge

oi the oscillations in the cross section as a function of aspect is required, this

result can prove to be extremely valuable. The expression so obtained for a

circular cylinder of length L and radius a is

t ~ 2
a = 7r a sin2 0 (sin(k Cos ) (A2 + B2 ) (4.4.5)i Cos 0

where

. A - J1(Zka sin 0 ) with J, the Bessel function of the first order,

D = (2/Ir) - S1 (2ka sin 0 ) with S1 the Struve function of the first order,

=0 the angle between the cylinder axis and the direction of incidence.*

*As an aid to computation the expression (A2 +B2) is presented graphically as a

function of (a sinG /A) in Figures 4.4-1 and 4.4-2.
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The above is for cylindt. rs whose dimensions are large in comparison

with the wavelength; let us now turn our attention to the case in which the

radius, a, is very small in terms of the wavelength; i. e. , to the thin wire case.

tWe will consider first the cross section of a perfectly conducting wire

which is many wavelengths long but only a fraction of a wavelength thick. Per-

haps the simplest formula which is in good agreement with experiment is Chu's

formula (Ref. 9) sin tiL cos

c= rL 2  sin2 [0 o' (LX
T a'cO2SCO4

r ) + ln
T ly I a si-n0

(i-)(4.4.6)

where L is the length of the wire, a is the radius of the wire, V = 1.78...,

0 is the angle between the wire and the direction of incidence, and 0 is the

angle between the polarization direction and the plane formed by the wire and

the direction of incidence. No attempt will be made here to derive this formula.

Except for 0 near 900 the two tips of the wire scatter essentially independently.

A slight change in 0 has a pronounced effect on the relative phase of the two

components so that there is a rapid oscillation, the components sometimes

adding and sometimes cancelling. When we approximate a part of the aircraft

by a thin wire we will not be able to determine the relative phase of the two

components accurately so that the proper picture is to replace the wire by two

independent scatterers (except for 0 near 90°) each having an effective cross

section given by
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O"e - n 2 nCose0 s4(4.4.7)

161 +(in

0
At 0 90 equation (4.4.7) diverges while equation (4.4.6) does not.kI

The reason for this is that at this one aspect the wire acts as a single scatterer.

For 0 90 then %ke must use equation (4.4.6) which reduces to:

2 4
e _ r L cos4 . (4.4.8)

(_)2 + a

Now let us turn our attention to the case of wires whose length is

comparable to the wavelength. The approximation technique employed here is

derived from the work of Van Vleck, Bloch, and Hammermesh (Ref. 9). In

Reference 9, the radar cross section, (r, the average return for fixed direction

of incidence but random polarization, ao(9), and the average cross section for

all aspects and polarizations, Cr, are related by the following equations:

T ao sinO dO d (4.4.9)

1r(0) = r do (4.4.10)

- f (0() sino d0 ,and (4.4.11)

r cos 4 0 o'() (4.4. 12)
3

14
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where the angle 0 is as shown in Figure 4.4-3. The angle • is the angle between

the electric field of the incident wave and the plane formed by the direction of

incidence and the wire (i.e. the plane of Figure 4.4-3).

wire

Direction to
radar

F G. 4.4-3: THE THIN WIRE COORDINATE SYSTEM

Relerence 9 contains plots of vs & for the case of L equal tc 0.5,
T

1.5, 2.0, and 1.25. If the wire in question is onie of tLese in size then direct

readings from these plots combined with the application of equation (4.4. 12) will

yield the desired estimate of the cross section; these foi'r plots are reproduced

in Figure 4.4-4.

A complete presentation of Methods A and B will be found in Reference 9.

All of the data presented in Figure 4.4-4 is for a wire of radius equal to 1/900

of its length; it can be expected, however, that over a wide range of radius values

these angular distributions of wire response will be appropriate. This is ilus-

trated in Reference 9 in the determination of .-¥ for wires of three different radii:

their Figure 2, which contains these results, is reproduced in Figure 4.4-5.
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; a(9) sine L - iO) sinL=1OO --- L 0.5 L I.
.4 .4T

A,
B/

.3 - -- //

/
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AC

0 30 60 90 60 90
9 e

a(0) sine
X2

or(9) sine I : I

.5 -- 1.5 5 -2.0

. 4 .4 ]

I I I

• -- ! I, .

I/ AC

0- 30) --- 60 90

0030 60 90

0 (in degrees). FIG. 4.4-4: ANGULAR DISTRIBUTION OF RESPONSE OF WIRES (REF. 9)

(a 900 where a radius of wire; A- -Method A, B--Method B,

C--Chu's formula)
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If other wire lengths are of interest in a specific problem one can employ

either Method A or Method B as given in Reference 9, the Chu formula, or one

can apply an approximation process based upon the material of Reference 9.

This appraximation procedure involves using the plot of O , (0 -= 90 ) given)e

in Reference 9 combined with the information presented in Reference 10 relative

to angular variation in response together with equations (4.4.9) through (4.4. 12).

.40-

.36i

.28

.2. - -

.2,4

,.16/

.12-

.08

0 .5 1 1.5 2. ,2.5 3

FIG. 4.4-5: RADAR RESPONSE OF WTRES - AVERAGE CROSS SFCTION
(225< L/a <1 900)
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The 900 plot reftrr d to above is showm in Figure 4.4-6 where the data of

Reference 9 is compared with the Chu estimate. We see that the Chu formula

suffices for wires which are more than two to three wavelengths long. The

cases of wires which are one wavelength and three-fourths of a wavelength long

will be discussed to illustrate the approximation process referred to above.

For the wire of length X we know from Reference 9 that

0.163 and r(e) sine - 0.04 at 9=9 0

X2  >, . 4a 0=9

From Reference 10 we find that Or(e) sine takes on its maximum value at

0
0 • 54 . Using this information together with data about the location (in 0) of

the half-power points (Ref. 10), a broken line graph approximation of the curve

0 O vs 0 can be obtained. In doing this we employ the knowledge that

f o(9) sinO dO _ 0.163 (4.4.13)
f AF

0

For the wire of length 3X/4 we find (from Ref. 5) that

I7/2
f r(O) sine dO - 0.023 (4.4.14)

0

and

- 0.04 at 0 90°.

Since a wire which is three-fourths of a wavelength long is a "non-resonant"

"wire we can employ equation (19) of Reference 9 to obtain values of TO) 9inO
At

at a few values of 61 (say 300, 600, and 750) and then fair a curve through these
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3 .2 . ..Estimate based

upon Chu's

3.0- formula

2.8 I
(Maximum value occurs when E-vector is parallel

S2.6 to the wire)

(Minimum value of zero occurs when E-vector is

S2.4- normal to the wire)
(The average value is 3/8 of the maximum value)

2.2 (Data obtained from Van Vleck, Bloch, and
Ha mine nme sh)

2.0
S.0Maximum

1.8

1.6 ._ _._

Wire length - L", ~1.4, Wire radius a (L/a 900)

1. Average

1.0

.8 _ __ _ __ __ _

.6

.4 _

' Minimum

0 1.0 2.0 3.0 4.0:'~ L/X "

FIG. 4.4-6: RADAR CROSS SECTION OF THIN WIRES AS A FUNCTION i
OF WIRE LENGTH, L, (8 a 900)
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points using the area integral in equation (4.4. 14) as a check on the resulting

curve. Figure 4.4-7 shows the results obtained for these two cases; the half-

wavelength wire is also included in the figure.

It should be repeated that Lhe above considerations are based upon the

analysis of wires for which L/a = 900. In view of the data presented in

Figure 4.4-5, however, it can be concluded that these estimates should still be

appropriate for a wide range of wire radii. To investigate this point furthar,

the cross section of a thin wire is plotted as a function of wire radius for 0 = 900

in Figure 4.4-8. In addition to the wire estimate, the optics expression for a

cylinder is extended into this region of wire radius space as well as the cylinder

data obtained from Mentzer (Ref. 11). We see from Figure 4.4-8 that the cross

section of a wire of given length does not change rapidly with changes in wire

radius and thus that the methodology presented here for a wire whose radius is

1/900 of its length can be considered appropriate for almost all 'wire" computa-

tions which arise in connection with problems of estimating the cross section of

an aircraft or a missile.

Th -work of Weber (Ref. 12) is also very useful in the consideration of

wV -vsz whose lengths are less than 0. 8), both for the monostatic and bistatic

cases. This point will be discussed in Section 5.

Van Vleck, Bloch, and Hammermesh in Reference 9 also give some

consideration to the very short wire case, a wire whose length is such that

A.L > 10. The expression they obtain for the cross section is (in the notation

employed here)
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-r Wire or cylinder radius = a
Wire or cylinder length = L

101, 1

100

Horizontal
Polarization /

from
Mentzer /

" / Vertical
Polariza- n

00, from Mentzer

10-1 __ _ _ _ _ _ _ _ _ _ _ _ _ _

Cylinder
.- '" Thin wire (Optics)

(Chu)
Horizontal
Polarization

1, l1O- 1-- 1 -1 100

* a/xt

FIG. 4.4-8: BROADSIDE RETURN FROM THIN WIRES AND CYLINDERS
AS A FUNCTION OF THE RADIUS
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I= /(ZA.L/• 6 Co .. 0(sin4 (415)1 -I n - (2 L/a} 2

From this expression we see that if V/.L >, 10 and L/a ) 10, then it follows

that r/k2 < 8.5 x 10-6. The magnitude of the return from such wires is

relatively so small as to make it possible to neglect such wires in most problems

of determining the cross section of an aircraft or missile.

* t 4.5 The Torwý, and the Wire Loop

The coordinate system employed in the analysis of the wire loop and the

general torus is as shown in Figure 4.5-1; the polar angles are as given in

Figure 4.2-1.

xy

FIG. 4.5-1: TWO VIEWS nF THE TORUS (WIRE LOOP)

When the wavelength is small lu comparison with both a and b we proceed

as follows: For off-no)rmal incidence the cross sectlon is obtained by use of

equations (3.25) qnd (3.29). The equation of the torus is taken as

( -0+z b (4.5.1)
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From equation (4.5.1) we find the p" needed for equation (3.29). There are

two contributions to the cross section, one where the incident wave hits the

"outside" of the torus and the other where the wave hits the "inside" of the

torus. In the two case:. we have p = a + b sine and p = a - b sinO respectively.

Substitution in the resulting form of equation (3.29) yields the two cont' 'butions

(it should be noted that the second contribution exists only if the inside of the

torus is not shadowed by the outside; i.e. only if b/(2a) <I cosOl). To obtain

the expression for the normal aspect we make use of equation (3.17).

Thus, for the short wavelength case we have at normal incidence (8 = 0O)

83 b a2  (4.5.2)

and for 0 > 0 we have the two contributions

r ( ba +bz) (4.5.3)r ---- \sinO

and

Cr 7= ba - b2) . (4.5.4)
sinO

In the range 0 • fcosej < b/(2a) the second contribution (eq. 4.5.4) is no

longer present.

If b is very small in comparison to the wavelength the torus takes on the

form of a wire loop. The cross section of a wire loop takes on a resonant peak

in the vicinity of ka = 1 and the magnitude of the cross section at this peak is

relatively independent of the wire radius. To obtain an estimate of the cross

section of a wire loop on the optics side of this resonant peak we extend the

methods used on the "straight'thin wire". We shall do this first for a wire
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which has a radius of about 1/ 85 of a wavelength (a value chosen for convenience

in computation) after which we shall consider the case for arbitrary (but small)

values of b.

The scattered field from a small straight piece of a thin wire is like that

of a dipole so that it has the form

(A A ikR

Es -CdI•R R x) e (4.5.5)
R

where C is a constant to be determined, di is the length of the piece of wire,

A
1 is the vector from the piece of wire to the field poir*. and / is a unit vector

along the piece of wire. At normal incidence with the Iolarization parallel tol ,

the cross section is

o =lim 4vs'r 2  -- (dc) 2  (4.5.6)*
r-ab r

i is the polarization vector then C is proportional to T h. Tus let C =C (p.L).

For the case to which equation (4.5.6) applies we have p R -

Substitution of equation (4. 5.5) into equation (4.5.6) gives

2 4 C 2 Cd)
( = Ii2 (4.5.7)

It is here that the assumption that the wire radius is X/85 is made. The
expression on ihe right side of the equation is obtained from tha Chu formu!a
for a wire radius set equal to X/ 85.
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Substitution back finally gives (taking into account the phase leg in making the

round trip from the radar to the wire and back to the radar)

Rx(R xt) 2ikR

E 2 dl R e (4.5.8)

Thus, corresponding to the physical optics formula for the cross section (equa-

tion 3.17), we have, in the case of a thin wire

I= - I . T_ , -- " J "I 'e z" V1

where,
2ikr' (4.5.9)

AA
Due to the relation p 0 0 we can also write

1 C 2i~.A 2
o =- •.,) e dt . (4.5. 10)

e I

The integration in bath equation (4. 5. 9) and (4. 5. 10) is taken along the wire.

The edge of a truncated ogive gives a thin wire contribution where the thin wire

is a loop in the x-y plane as shown in Figure 4.5-2. The thin wire contribution

is given in general by equation (4. 5. 10). To evaluate this for a loop consider

that on the wire we have x' = a coso', y'= a sin', and d t4d 2' + dyV = &do'

*A Aln +4 A A<i sinx + cosO. The direction of the dipole is -sino'i +coSo' . We

A A
have k . r' k(• + y)" a sine cost'. The polarization vector is

A A Ap -,a lT +Cos "I + sin') sinf I2 , where Y is the angle bat-ween1 the

polarizatict vector and the y-axis. Substitution into equation (4. 5.10) gives fiually' 1 58



III
T f 2a (,1asnt o (cos'O sin 2 Osin 2y+2e()ossino'coso Isin•'cosY

0

V+ Cos 2p co 2,"S) do' (4.5.11)

a= 1a2 (cos 2 Osin2V +cos 2 )')J0 (Zka sine) 4- [ (cos2 Osin2  -cos 2 Y))J2 (Zka sine)1 2

x

FIG. 4.5-2: WIRE LOOP

For e = 0, equation (4.5. 11) gives c e -•ra 2. For 0 enough greater

than zero that Zka sin9 >> 1, we can use the asymptotic expansiuns for the

Bessel functions:
| r

0 1 cos(z-!/4) + - sin(z-r/4) - 9 co2 (-i/4 88

C,(z V -~ L 8z 128z2

(4.5. :2)

J (z) .- cos(z-ir/4) + -1-- sin(z-/4)+ 10-5- cos(z-ir/4) +..
298z 128z 2
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Using equation (4.5. 12) and the average values of sin 2(Zka sin0 -7r/4),

sin(2ka sine-7r/4)cos(2ka sine-ir/4), and Cos 2(2ka sine-ir/4) (which are 1/2,

0, and 1/2 respectively) in equation (4.5.11) we obtain

(4.5. 13)

Average T. Cos 4aY + 8cos4 esin4 )'-8cos2 0sin2y'cosZy-cos 4 "

K ~~ ~ ~ 7 Averag 32~..' o 4  (ka sin9) 2

Except when cos Y is nearly zero the first term in braces is sufficient

and the cross section becomes wr a2 for

e A cos 4 v (4.5.14)

x2a3

For cos , = 0, the cross section becomes Pr a2 when

,, . (4.5.15)
(2xr)4/3 a 1/3

The above analysis is carried out for a wire of radius equal to about

1/85 of a wavelength; an approximation for a wire of arbitrary radius can be

obtained by replacing the right hand member of equation (4.5.6) by one which

invtlves the wire radius; that is, for example, Chu's formula. This substitu-

tion into equation (4. 5.6) results, upon the application of the steps outined in

the equations following (4.5.6), in the following expression for the cross section

when O - 0

S) + (ln(85ITr) (4.5.16)

rra' (7/2)2 + (ln(X/y wb))2

where b = the wire radius, a = the loop radius, and Y = 1..78....

A plot of equation (4.5.16) is given In Figure 4.5-3; one will observe that the cross
section is not critically dependent upon the radiua of the wire for small values of b.

iI
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The situation for 0 00 for various sized wires has been investigated

by Kouyoumjian (Ref. 13). Kouyoumjian's results are shown in Figure 4.5-4

together with the corresponding values derived from equation (4.5.16).

Kouyoumjian in his paper, "The Calculation of the Echo Area of Several

Scatterers of Simple Geometry by the Variational Method;' which he presented

at the Symposium on IMicrowave Optics at McGill University in June 1953 gives

us a relation between the return from a wire loop at 0 = 0° and at 0 = 900. This

relationship is displayed in Figure 4.5-5 where we rote that if the loop radius is

about 0. 10 of a wavelength we can expect a return like that from a small sphere.

4.6 The Ogive

4.6.1 The Complete Ogive

Methods for obtaining the cross section of an ogive in the Rayleigh region

are discussed in Appendix B. Thus, let us first consider the case of the cross

section for very small wavelengths. The coordinate system employed in this

discussion is shown in Figure 4.6-1. We see from Figrie 4.6-1 that the ogive

is obtained by rotating an arc of a circle of radius R about a chord located a dis-

- tance R-a from thE center of the circle. This results in an ogive of length L and

half-angle a which are related to R and a by the equations
= i L _ •;R21 _a)2-•.61

cosa == (a/R ) and --- -(R . (4.6.1)

I Using the cylindrical coordinates (w. , z) the equation of the surface is

(w + R - a) + z2  (4.6.2)

withi ,i 4 L/2 and 0( w a.
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2.0 (1) Kouyoumjian's results
(1') Estimate
(1") Equation (4.5.16)

2: wire loop with b = 0.005X
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0.6 - (2') Equation (4.5.16)
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FIG. 4.5-4: RADAR CROSS SECTION OF WIRE LOOPS
AT THE NORMAL ASPECT 8 00
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Applying the optics approach defined by equation (3.17) and ignoring all

couitributions except that from the tip we find that for 00 4 O <( (900 - a) we have

24
A- tan a (4.6.3)

161 cos4B9 (1 _ tan2 a tan2g)3

with V)l/R<a < (fIz)- (r7ii-.

At 8 = 900 -a we find that the cross section is given by

S(900-o ) *j..snýa. =_ .2 (4. G.4)
U (4, tan2 (x/Z))

In the region(900 - < < 8< 900, the application of equation (3-25) yields

the expression
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1 R() R l a) (4.6.5)

The symmetry of the body is such that we have (r(G) = (r -el).

It is of interest to check the behavior of equation (4.6.3) at 0 =0 foi

large half-angle ogl es since as the half-angle approaches 900 the body takes

on the shape of a sphere.

Since wrp 2 is t1e cross section of the sphere (at t&ese small waveler4ths),
) 1

let us consider the ratic (r (0°)/irR2 using thhe expression in equation (4.6.3).
ogi",e

Employing the maximum value of a indicated under equation (4.6.3), we find that

C R(0) .4 (4.6.5_)
ir R2 RI

Since the limit of x cot(x) is I as x approaches zero, it follows that the maLximum

value of thz nose-on cross section for an ogive predicted by equztion (4.6.3) is

1r R1.

As pointed out .n Reference 4, a better approximation for the near nose-on

aspects of thin ogives is given by

o(ro) (2/(-" +-Cin(kL)) V X/4v (4.6.7)

where

1f(O) i--[ seinO sin[(kL/2) (1-cose)]
, (I - eosO)

and

Cin(x) - modified cosin6 integral of argument x.

As an aid to the application of aquation (4,6,7) a plot of F' z I/f{(-I +Cin(kL))'}

is presented in Figure 4.6-2, This substitution results in equaton (4.6.7)

being condensed into the form
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FIG. 4.6-2: THE FUNCTION F IN EQUATION 4.6.8
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(0) F'(f() X (4.6.8)

For the nose-on case we again note from Reference 4 that in the

resonance region for thin ogives a better approximation to the cross section

is given by

.(0o) _ tan4 +_.~ (4.6.9)
167r 2

From the work of Fock (Ref. 14) an estimate can be found for a lower bound of

ka for which the current on the rear has attenuated sufficiently to justify the

neglect of the contribution from the rear. It is assumed that an attenuation of

the current reaching the rear tip to less than one-tenth of the current at the

shadow boundary is required to insure that the front tip contribution dominates.

Using Fock's expressions for the current on the rear of the sphere, the minimum

kR1 for which attenuation to one-tenth takes place is plotted against the half-angle

of the ogive in Figure 4.6-3. It is seen that for thin ogives (say a1 < 300) kR I

must be greater than 200 in order for the tip contribution to dominate (that is,

in order for equation (4.6.3) to be appropriate at e = 0°)

4.6.2 The Truncated Ogive

Let us consider an ogive truncated in the manner shown in Figure 4.6-4.

That is, z is limited by the relation

Ijzj< (biC 1 (4.6.10)
2

Let the radius of the circle cut by this truncation plane z = b from the ogive

have a radius a a'. The application of the optics methods defined by equation

(3.17) indicates that for incidence along the z-axis the cross section is given by
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FIG. 4.6 -4: THE TRUNCATED OGIVE

S? r(a') 2 tan 2 (cr') (4.6.11)

where a' is the angle between the z-axis and the ogive tangent plane where the

ogive is truncated. For 0 < 8<• a' and0•(90-ce) there are two contributions

to the cross section given by

>ja' tan, (0 + a') and k.al tan2 (8 -a') (4.6.12)
87 sin/ 8i sinO

Force 9' < 90° a' (a range which exists only when ct' 450), the second of

these contributions is absent. For the remaining values of 0 (8 < 900) the ap-

proach used for the entire ogive in Section 4. 6. 1 is applicable (i. e. , equation

i 4.6.5). S70
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--- WAR

The expressions given above for the cross section of a truncated ogive

are those obtained by physical optics through the application of equation (S. 17).

If the truncation of the ogive results in an opening then this alse must be treated.

If the rim is bharp, then tl.e wire loorp contribution should be added to the con-

tributin obtainpd from equations (4.6. 11) and (4.6, iZ); this can be done using

the met!hods given in Section 4.5. If this truncation leaves a flat plate, then the

methods discussed in Section 4.7 should be used.

Mften one is -ohfronted with an ogival shape which is truncated with a

sphere (see Fig. 4.6-5). The approach one can use for this body is similar to

that used for the complete ogive and in fact result: in the upper bound for the

"creeping wave "' contrilution from the rear of thb ogive given in equation (4.6.9).

The spbtre cross section can be decomposed into a geometiical optics

term plus a diffraction term; the optics term comes from the region of specular

reflection and the diffraction tern, from the effects of the currents induced in

the shadow region and near the shadow boundary. This coinsideration leads ur

to attempt to approximate the "contribution from the rear" for a shape like that

shown in Figure 4.6-5 by usiIg known 9phere results. Rea'ilng values of the

cross section fromr the exact sphere curve (see Fig. 4.2-2) we obt-nin the following

estimate foi" this rear contribution

rra - 1. 03 ()52 (4.6.103)

where the a is as shown in Figure 4.6-5. Experience haa 6,hown this to be R

good estimate fo: values of ka Zror ! up !o about 15. For larger values of ka

let us employ the physical optics expression for the cross senlion of a sphere.

71



Although physical optics dor.s not accurately predict the location of the

relative maxima and minima it does predict with reasonable accuracy the

amplitude of these relative maxima. The sphere cross section in the physical

optics region is given by equation (4.2.5). This expression takes or a maximum

value whenever Zka = (4n+3) r/2. With the approximation ira 2 used for the con-

tribution from the first Fresnel zone, we have

FIG. 4.6-5: AN OGIVE CAPPED BY A SPHERE

( ~ ~ + , ~ ) 2ira 2 (i ÷ - ~ ~ 2(4 .6 .1 4 )

from which is obtained

r e r (4.6.15)rear 4(ka)2

162 L (4.6.16)
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A maximum value for the contribution from the rear can be obtained by

assuming that r = 7ra 2 + crrear in equation (4.2.5) and maximizing the right

hand side of the equation; this results in the aA/Z estimate of equation (4.6.9).

As an aid in computation a plot of equation (4.6.13) is given below in

Figure 4.6-6. A much more detailed computation of this "contribution from

the rear" was made by V. E. Pound of the Cornell Aeronautical Laboratory,

Incorporated (in C.A. L. Internal Memorandum No. 830-141). The results of

• iPound's computation is also shown in Figure 4.6-6.

4.7 The Flat Plate

In this consideration of a flat plate let us assume that the plate is located

in the x-y plane with the polar angles defining the direction of incidence as

indicated in Figure 4.2-1.

4.7.1 The Rectangular Flat Plate

Employing the physical optics approach of equation (3. 17) we find that

for a rectangular flat plate 2a by Zb (the 2a dimension along the x-axis and the

Zb dimension along the y-axis) we have for 0 00

2 2
- 64wra b (4.7.1)

In the y-z plane (• s 900 or 2700) there are two components each given by

I a"- •(4.7.2)- • ain *

In the x-z plane ( d o 00 or 180e) there are two components each given by

L 6s (4.7.3)
vIta,
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For other aspects there are four components each given by

A cos2, (4.7.4)Ir 647r3 sin40sin2• cos2

4.7.2 The Circular Flat Plate

The circular flat plate or disc cross section formula is

2

( = 7, 21r sn 4.7.5)
=tan

2 0 (

where a f the radius of the disc and Jj(x) is the Bessel function of the first

kind. When the asymptotic formula for the Bessel function is used (kasin ;8'l)

it is found that the scattering is due to two components with the magnitudes

given by aXk . (4.7.6)
8z sine tan2 

2

4 7.3 The General Flat Plate

With the flat plate located in the xy-plane we have for normal

incidence (0 = 00)

4r 4A 2  
(4.7.7)

where A is the area of the plate. For non-normal incidence we have by

extending the results obtained for the circular disc that there is a contribution

to the cross section from each point on the boundary of the plate at which the

Li boundary is perpendicular to the direction of incidence. If a is the radius of

curvature of the boundary at this point (and a is finite) then the contribution is

as given in equation (4.7.6). If a is Infinite then the plate In-question would be,
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at least in part, rectangular and the approach of Section 4.7.1 would apply.

In the case of an elliptical disc defined by the equation

(x)22= 1 (4.7.8)

we find for 0 > 0°

S•a 2 b2
=rX a 2 b (4 . 7 . 9 )

8r sinO tan20(a2cosZ+b2 sin z) 3 /2

4.8 The Tapered Wedge

We shall postpone the consideration of the tapered wedge (shown in

Figure 4.8-1) for the present; it is discussed in Appendix A in considerable

detail for general polarizations (see Section 6.6). We will remark, however,

that over a wide range of aspects the return is dominated by the sharp edge of

the tapered wedge, which may be treated as a thin wire. It will be observed

that for

(1/tan a) < tanO cosp

the tapered wedge looks like a cylinder for short wavelengths.
z

y

x

FIG. 4.8-1: THE TAPERED WEDGE
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j 4.9 Corner Reflectors and Multiple Reflectors

The subject of corner reflectors and multiple reflectors in general has

been discussed in a previous University of Michigan Report. We are including

the material of that report in its entirety as Appendix C to thisreport and thus

the reader is referred to Appendix C for the discussion of corner reflectors.

We will, however, in the present section make a few comments on double

reflections.

The methods of geometric optics are applied in this analysis of multiple

reflections and the case of multiple scattering by N bodies is discussed in Ap-

pendix C. Here we restrict our attention to the case of N = 2. Approximating

each pair of aircraft components in the vicinity of the reflecting points by the

surfaces
S+ -- (i 0 =1 and 2) (4.9.1)
2ril 2 i2y

where the zi axes are oriented in the direction of the normals to the surfaces

A Aý
(thus • . I = e**) and

S1 yZ2A A A .A A A A .A
ixl. *iX2 ---- 1; ixiyJ = iyJ* ix2 = iyJ ty2 =

the material of Appendix C indicates that the double-reflection contribution to

the cross section is given by

Additional comments on corner reflectors will be found in Appendix D.

In order for the reflected ray to return in the direction from which it came it
is necessary that the normals to the two surfaces at the reflecting points be
perpendicular.
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(4.9.2Z)
7 P11 P12 P21 P4.

b2 si( i( )+P1cs Usnt?+ý1 cos ~+P sin t

The geometry of the situation as well as graphical defninitions of the parameters

Sand b are given in Figure 4.9-1.

b

I .

AA
I / P

0 I

N//9

FIG. 4.9-1: DOUBLE REFLECTIONS (showing one of the two rays;
the other ray follows the reverse path)

In the cases corresponding to 0 = 0° or 90o, one body is in the shadow

of the other, or a tri; e reflection is involved. For these reasons it is thought

to be desirable to limit the application of equation (4.9.2) to the range 15 o°

S750. With this restriction we see that the double-reflection contribution is

bounded by the relatlon
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27r P11 P12 P21 P22
a- < (4.9.3)

bz

This inequality is extremely useful in determining the question of whether

double reflections need be considered in the problem of estimating the cross

section of a given aircraft. Often one is presented with a situation in which

the b is zero. The above expression can be made to yield an estimate of the

cross section in such a case if one of the p's is infinite. For example suppose

that b = 0 and p22 = oo. Equation (4.9. 2) can be rewritten in the form

(4.9.4)

iT P11 P12 P21
or = -- "o 

s s i t
sin(24)b s in(2 4) + P21 cost+ 1  m][ + pla sosnts+ P

P22 P22

from which it follows that

"Pu Pli P21P~
lim ra I P11 P12P2 (4.9.5)

b -"-0 sln tsin(2.)[ P21 COBe + P11l sin(
P22 --000

4. 10 The Paraboloid

For a paraboloid defined by the equation x2 + y2 = _ 4pz and with the

direction to the radar defined as in Figure 4.2-1 the methods of geometric

optics yield 2

(I + cos(2o))3
2 4(4.0o. 1)

4 r"p sec:O
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The above gives the value of the cross section of the infinite paraboloid. In

using a paraboloid to model the nose section of a fuselage or a wing tank onesof

courseis dealing with a truncated or smoothed paraboloid and care must be

taken to add the contributions from the truncated rear of the paraboloid.

[ It is shown in Reference 18 (and in Reference 15) that equation (4.10. 1)

yields the exact cross section for incidence along the axis of symmetry; that is,

for 9 = 00.

4.11 Summary

In this section we have presented the methods of approach to be used in

determining the radar cross sections of the simple shapes used in modeling the

components of an aircraft or a missile. As stated earlier our knowledge of

radar cross sections, even for simple shapes, is far from being complete; the

state of the art is such that good approximations are available in the optics region

and in the Rayleigh region but the knowledge of the behavior of the cross section

of a given shape in the resonance rbgion is, by comparison, quite meager. Thus,

it is not surprising that from time to time one will be confronted with a complex

shape for which the methods and formulas presented here are not completely

adequate. In such a case it is often ptsstble to obtain the necessary information

from a judicious analysis of existing experimental data on shapes of "similar"

size and shape. That is, apply the methods given here to the study of the "ex-

perimental configuration" and by working backwards obtain an estimate of the

contribution of the simple shape component of the "experimental configuration".
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We shall close this discussion of simple shape cross sections in the

optics region (and that has been the region of primary concern in this section)

with a brief examination of the peak width method of approach.

To obtain an estimate of peak width (i. e. the aspects at which the cross

section is only 1/2, 1/10, 1/100, etc. of its value at the "normal" aspect) we

require that the average cross section for non-normal incidence be (1/N) times

the cross section at normal incidence, solve the resulting equation for the aspect

angle and thus obtain solutions ON at which the cross section is only (1/N)th of

g jthe value at the peak.

This situation arises when the body in question has one principal radius

of curvature which is infinite; the bodies discussed in this section having this
I

property are the Cone, the Cylinder, the Thin Wire, the Torus, the Wire Loop,

and the Flat Plate. The thin wire situation is discussed in Section 4.1 and the

case of the wire loop in Section 4.5 (equations 4.5.14 and 4.5.15); here we shall

restrict our attention to the cone, the cylinder, the torus, and the circular flat

plate.

The Cylinder: The cross section of an elliptic cylinder at normal aspect (0 90.)

is given by equation (4.4. 1) and the cross section contribution of each end of the

cylinder is given by equation (4.4.2). Tnus, if the sum of the two non-normal-

incidence cross sections is to be (1/N)th of the cross section at 0 = 900, we have

Z~rLNa4b-__ . ( 4.11.1)

M(a2 cos2j+b 2 sin2 3 /) 87 cos 0 N (acos2 + b2sin 2)3/ '
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This expression reduces to

(sinO)N _ 8L 2i 2  (4.11.2 )2 (4112

cos eN NV2

and for small 1(0 close to 900) this is approximately equivalent to
N

Cos SN = (N/2) ()ý/2L)2 . (4.11.3)

From the above we obtain

ON = (Y112) + (N/2)1/2 (X/z rL) (4.11.4)

as the measure of the peak width; i.e., the angles at which the cross section is

down by a factor of N from its value at 9 900.

It should be noted that the above assumes that both ends of the cylinder

are sharply terminated. If one end is smoothly faired into another body (such as

a sphere or an ogive) then equation (4. 11. 1) would have to be appropriately

modified.

The Truncated Cone: The cross section at normal aspect (defined by eq. 4.3. 12)

is given by equation (4.3.11) and the cross section contributions at the non-normal

aspects are given by equation (4.3.13). If we assume that the truncated cone is

sharply terminated at each end, then the equation we obtain for the determination

of the 0N is 3/2 3/2 4 3

F8W(L12  -L1  )tan _ M (L+ L2) 17 tan o

(4.11.5)
sin• coso tan a I

x +2in • C iosJ)M 17

sinON tan a (sin2r + ,7cos2I3/2 + V COSON
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Making use of the expression for O_l given in equation (4. 3., 12), we find that

equation (4.11.5) may be rewritten in the form

3/2 3/- 2 2 (4.11.6)
64 r2 (L2 -L,±L 2 +t2 (20+112C 2p)) 2 __

- -(n + tan a (sin2+ lcol) -- r

9N X2 (L, + L2) tan2 eN -W

from which we obtain the measure of the peak width

_0 3tlX YNiiLTi 2) ( 12 + a 0+n2 CS2 -/2N 3• -1/322si

+L•)~~~8 (L7ý L+anin¢ )cj)
6

-8L L(4.11.7)

For the case of a circular cone (7 = 1) we have

U3 y/Nh(LI+L 2) cosaoN -3±8••/2 3L/2 '..8
81 (L2 3/2LI

, The Torus: The cross section at normal incidence ( = 00) for the torus is

I given by equation (4.5.2) and the non-normal incidence contributions are given

by equations (4.5.3) and (4.5.4). Thus to determine O we have

8 ba2  - N (Zba uf/sinON) . (4.11.9)

From which we readily obtain (for small A)

I N I- ./4ir2a) . (4.11.10)

The Circular Flat Plate: To determine eN for a circular flat plate (for small X)

we employ the expressions given in Section 4.7 to obtain

4
S - - Na ) (4.11.11)

A!8w singN taflaGN(&)3/2
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from which we obtain

ON ---" Mr) ()/,a) r (4.11.12)

The peak width results for the cylinder, the torus, and the circular

flat plate are shown graphically in Figures 4.11-1 through 4.11-3 (where the

magnitude of (ON - 0) is plotted against N for four different values of the ratio

of wavelength-to-body dimension. The material of these figures will make it

possible to obtain a good estimate of the peak width for almost all cylinders,

torii, and circular flat plates as long as the wavelength is no greater than

0.3 times the critical body dimension.
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FIG. 4. 11-1: PEAK WIDTHS FOR THE CYLINDER
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FIG. 4. 11-2: PEAK WIDTHS FOR A TORUS
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FIG. 4.11-3: PEAK WIDTHS FOR THE CIRCULAR FLAT PLATE
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5

BISTATIC RADAR CROSS SECTIONS

5. 1 Bistatic Cross Sections For Angles of Separation Less Th3n 100

Bistatic cross sections for small wavelengths have been discussed in

considerable detail in Reference 15 where the cross sections of several simple

shapes are presented. There is, however, a very simple relationship which

exists between the monostatic and bistatic cross sections that permits the

determination of the bistatic cross section in terms of the monostatic results

presented elsewhere in this repirt. Thus, we shall direct our attention to

this relationehip which we shal! present in the form of a theorem:

IN THE LIMIT OF VANISHING WAVELENGTH THE BISIATIC

CROSS SECTION FOR TRANSMITTER DIRECTION k AND RE-

A
CEIVER DIRECTION no IS EQUAL TO THE MONOSTATIC CROSS

SECTION FOR THE TRANSMITTER-RECEIVER DIRECTION t +Ano

A
WITH k -- no FOR BODIES WHICH ARE SUFFICIENTLY SMOOTH

PROOF: From page 12 of Reference 15 we have the cross section as a

function of receiver and transmitter positions given by

2 2'
i - wie~e j F~j + fFYjI + jF 2 J2 1511

w~err
2r 1k 0)f o
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with - expf+ Ik-"' (go +'•)] dS (5.1.3)

k = 21/X, (X-the wavelength),

An 0- unit vector directed frora the receiver to the origin,

a unit vector defining the incident magnetic field direction,

81 illuminated region of the body,

4 A
n unit outward normal to the surface,

-tr -- radius vector from origin to a point on the surface of the

reflecting body, and

A
k = unit vector directed from the transmitter to the origin.

Let the origin of a rect.angular coordinate system be located inside

the reflecting surface. Since the body is not specified in what follows there

will be no loss in generality if the transmitter in the bistatic case be placed

on the z-axis of the coordinate system and the receiver be restricted to lie

in the y-z plane. Thus. the geometry we shall employ in the bistatic case

is defined by

(sin 2) (co 20)

AA
k i and (5.1.4)

Cos Ot ix + sin 0t ly

and in the corresponding manostatic case by
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A(COS)0) 
A

n 0 (sin(0)sAli z

y1

A A
k -(sin6) A - (cos9) i , and (5.1.5)

A
a =cdO si tCS01+ sin Otsin 0 l

This geometry is illustrated in Figure 5.1-1. Also, 6 is restricted to be less

0 A A

AA

than 9vg; i(e. 5ao p. 18.
0

< 

(no 
~k 

k

1 .. t ')1dS, 5.y6

FIG. 5. 1-1: BISTATIC GEOMETRY USED IN PROOF OF RELATIONSHIP

BETWEEN BISTATIC AND MONOSTATIC

CROSS SECTIONS

First let us consider the vector f. We have, in the limit of vanishing

wavelength (Ref. 15, p. 16)

f=-(° ) j x [S k? +•) dS (5.1.6)
a'= .o +TC1 S1 t•' to

where the integral is evaluated by stationary phase. Thus, In the monostatic

190



case we have

w P exp i.ti' (2)A dS (5.1.7)

where

Ap (sine)• -(Cos0) A

4 y

and in the bistatic case we have

Tf= -P exp[-iko(z2cos0)J dS. (5.1.8)
IS

Thus, evaluating these integrals by stationary phase (page 14), Ref. 15 we

obtain expressions of the form:

in the monostatic case

PA sin ) - (A cos 0)) exp (ikC), (5.1.9)y

and in the bistatic case

f = [(Atan - (A) i] exp(IkCcoso). (5.1.10)

Therefore, in the monostatic case under consideration we have

.= [(AekC) ( coso t+ty sin t coso0+z sin tsin8) (5.1.11)
2w

from which it follows that

2 F =tkAI2vV. (5.1.12)

:; IIn the bitatic case under consideration we have
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i-- f eikCcos ° ( tin,,2o)(y , -- (tanosin2o+cos2Oa(e cooot•t inyso"t•

(5.1.13)

Thus,

+ FY2 + =Fp kA/2,rj [(tanOsin2Gfos2os206s2 .0n0toZ+ sin 20tsin 22 0]

= kA/ 271l 2 . (5.1.14)

-. . From the definition of a it follows that for both cases under o'onsideration

a kI' / (5,1.15)

and thus if the body is smooth the bistatic cross section corresponding to a

transmitter direction, t, and a receiver direction, Ao, is equal to the mono-

4A A
static cross section corresponding to the transmitter-receiver direction, no+k,

in the limit of vanishing wavelength.

Thus, if the wavelength is small in comparison with the dimensions of

the body, we can determine the bistatic cross section by applying the above

theorem together with the monostatic results of Section 4.

For the thin wire an approximation procedure based upon the material

of References 9, 11, and 12 is as follows:

If R(O) is the angular factor predicted by Terman's graphs (Ref. 10),

Recent experimental work (Ref. 16) has indicated that this procedure will give
good results even for comparatively large wavelengthks, wavelength to body
dimensions that one would find in considering the B-47 aircraft at 250 Mc.

9z
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then we have in the monostatic case

o(0riOt) = K [R(O)] 4  (5.1.16)

where by or(e t) we mean that Or denotes the direction to the receiver and Ot

the direction to the transmitter, and K is independent of aspect and the wave-

length depending only on the wire parameters. In the bistatic case we would

have

o (Or,t) = K R(Or) 2 [R(et) 2 . (5.1.17)

Equations (5.1.16) and (5.1.17) imply that

-(Or,* et) x (5.1.18)

i. e. that the bistatic cross section is equal to the square root of the product of the

two corresponding monostatic cross sections. A study of Weber's work (Ref. 12)

indicates that this approach is appropriate for the case of the half -wavt! ength wire.

It is important to note that in the bistatic case the reciprocity theorem

permits the determination of complete patterns with a reduction in the computa-

tional effort. The theorem states that the effective cross section is unchanged

if the positions of the transmitter and receiver are interchanged.

5.2 Bistatic Cross Sections For An Angle of Separation of 1800 - Forward Scattering

Here we shall concentrate on the case of in angle of separation of 1800,

the case in which to + 0 (see Figure 5. 1-). This case, as will be recalled.

Is not covered by the theorem of Section 5.1.
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I
4

This case is of considerable importance and warrants special attention

for two reasons. One is due to its nature which we will find is considerably

different than the type of bistatic scattering discussed in the preceding section.

The other is due to what might be termed a misuse of the term. This type of

scattering phenomena is only observed for an angle of separation, 3, such

that f 1800. (Experiinentally, of course, the phenomena of forward scat-

tering will be observed over an interval around 1 1800, however this is a

small interval.)

z

Transmitter
j A

Receiver no

I •Scattering Body

Xy

FIG. 5.2-1: GEOMETRY FOR ANALYSIS OF BISTATIC CASE

For the geometry shown in Figure 5.2-1 we have from equation (3.2.6)

of Reference 15 that the cross section in the bistatic case is given by

~ j ia ( 4s dts~.I (5.2.1)

where

2r -•f)a 1
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WWII T-22

with

A
d direction of receiver polarization

t Aa = direction of incident magnetic field,

k = 27/x,

go -- direction from receiver to the origin,

A
k = direction from transmitter to the origin,

! t = flexp Ekr •

So

S' = illuminated portion of the body,

= radius vector from the origin to any point on the surface of the

scattering body, and

A
n the unitoutward normal to the surface.F. If in our discussion we do not specify the body geometry of the scatterer there

will be no loss in generality in our consideration of this optics case if we

restrict the receiver to lie in the yz-plane and the transmitter to be located

on the z-axis (as shown in Figure 5.2-1).

With the above we may rewrite equation (5.2.1) in the form

or 4w 0-Aa ' d 00d' (5.2.2)

Restricting our attention to the case of B 1800, we have

A A Ai A
AA An0 iz iz . (Cos Ot) i x + (sin~ N ,u a

and Co00'xs inA A
95 ax + Sin Or "
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from which we obtain upon substitdtion into equation (5.2.2)

a 00 () 4r (COS t cos Or + sin Ot sinr) [ nz d ( (5.2.3)
Aý I S I -i 1

The irtegral in equation (5.2.3) is merely the projected area in the xy-plane

and if we represent this area by A we obtain

2 2
(a ) = 4rA cos (Ot-Or) (5.2.4)

If the polarizations are chosen so as to obtain the maximum return then this

expression reduces to

a ( A - (5.2.5)

The case of forward scattering by a sharp edge can be handled in

terms of the material of Reference 17; the ratio of I 'H I toI-II is displayed

graphically in Figure 5.2-2.

The subject of forward scattering is discussed in more detail in Appendix

E.

5.3 Bistatic Cross Sections - Illustrative Examples

Several examples of bistatic cross sections for simple shapes can be

found in References 18 and 15; here, to serve as an illustration of the applica-

tion of the material of Section 5.1 and also to give the reader a feeling for the

relative magnitudes of monostatic and bistatic cross sections, we shall consider

the following simple situation.
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I IHI c-.2Observation
.-- • •/Point

_• l Geometry: /
S' 1.2

1.0 
Direction of

0.8 8

0.6

0.4

0.2 _ _ _

0 -
-8 -6 -4 -2 0 2 4 6

(1) Field is independent of 0 for 8 > % OD

(2) H/Hjnc = (l7)Wo2.IF( - 2kr sin (Cf 2l where F (x) 5 exp (4 dE

(3) This neglects an edge wave which is effectively uniform over the values

oi C considered and decreases with increasing distance from the edge.

(4) Except for the approximation (3), the result is exact for the half-

plane and within 1%/ for wedges of angle 0 < 150.

FIG. 5.2-2: 1 H/H, 4 AS A FUNCTION OF ANGLE FROM SHADOWi
! EDGE FOR A WEDGE
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Let a transmitter (and receiver) be located at the origin of a rectan-

gular coordinate system and let a receiver be located at the point (0, 2d, 0).

Let a body in the shape of a 10:1 prolate spheroid n~ve "between" these

two points at an altitude equal to z following a flight path defined by the
0

vector V' = (cos P) ^1 + (sinr ) Ai' This flight path will cross the yz-plane
x 3'

at the point (0, y, zo) with 0,< Y y 2d. This geometry is shown in Figure

5.3-1.

z

,* --- Spheroid (x, y', zO)

A 1/ I / t! ' A

,v V

- I , (0, Y. z0
/ I oI I

/

Transmitter 0 . Re eIe,

0 (0, y', 0) (0, y, 0) (.; 2d, 0)

x

FIG. 5.3-1: GEOMETRY FOR BISTATIC ILLUSTRATIONS

In these .xamnples we will assume that the vector V lies along the

major axis of the spheroid. We shall consider the cross sections as a

function of the altitude zo, the cross-over-point y, and the flight direction

•. In each case the monostadic cross section (receiver at origin) and the

bistatic cross section corresponding to the transmitter at the c-igin and
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"the receiver at the point (0, 2d, 0) is determined. Specifically, we shall

consider the following three cases:

(1) zo/d =0.04 and f= 0; y =0o d, and 2d; -0.4•x/d,0.4.

(2) x/d -0.2 and • :0; zo/d .12; 0\( y,, 2d.

(3) x - 0, --o/d = 0.2.

In each case we make use of the theorem of Section 5. to determiLne

the cross sections for the bistatic case from the material of Section 4 which

of course also yields the monostatic data. The results obtained are shown

Iin Figures 5. 3-2 through 5. 3-4 for the above three cases res'w-tIvely.

We see from Figure 5.3-2 that for flight paths which are normal to

the nase line the bistatic return is appreciably larger than the monostatic

if the object paoses over the transmitter, there is little or no difference in

the two returns if the flight path is over the bistatic receiver, and that if

the flight path is over the midpoint of the base line then the monostatic

return tends to be the larger.

From Figure 5. 3-3 we note that for detection at a given distance

from the base line the bistatic return is larger if the path is over the

transmitter, the monostatic is considerably larger for flight paths over the

midpohit of the base line, and that for other parallel flight paths the mono-

static return tends to be slightly larger.

Figure 5.3-4 gives information about the relative magnitudes of the

I bistatic and monostatic returns at the moment the object passes over the
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base line; we see from the figure that If the object passes over the base line

with 0 = 0 or at y/ d 0. 5 then thu two cross sections are equal. If y/ d is

less than 1/2 then the monostatic return is either the same or greater than

the bistatic. For y/d /> 0.5 and 0 ý 0 the bistatic return is larger, and if

y/d is close to one then the bistatic return can be considerably larger.

The situation becomes more complex if the body in question is not of

this simple form; for example, if the prolate spheroid discussed above should

have wing, rudder, and stabilizer surfaces attached, then the comparisons

would be somewhat different. For most of the aspects one would consider

(assuming a similar flight path) the contributions from the fuselage (the

spheroid) would dominate, but there would be aspects at which peaks in the

return would result due to contributions from the edges of the wing surfaces.

In comparing the radar cross section in the bistatic case with a

corresponding monostatic case it is important to note that shadowing effects

can play a dominant role. The theorem of Section 5.1 might lead one to

think that the relationship given there for simple shapes would also hold

for cross section studies on such shapes as aircraft. If the wavelenigth is

sufficiently small and if none of the contributions are shadowed out, then

the theorem of Section 5. 1 would be applicable to the complex body problem.

However, it will often happen that components which are dominant for the

monostatic case will be completely shadowed in the bittlc case and

conversely. This situation is illustrated In Figures 5.3-5 and 5.3-6.
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(1) (2) (3)

,j /4 / ,

. /

x/

3 f I / I /

'Iistti -A (- an (3)-- __

LUoosai - (2) and (3)_____

10 1

aI, • - _ 0 d ... _ 2d/__

I x I _ I

A ~~Bistatic -(2) n(3

10 1 Monostatic -(2 n ( 3)

103_ __ -iI1

10 - - _ _ _ __ _-

____. . . .._ ____ ___ __

-0.20 -0.16 -0.12 -. 08 -. 04 0 .04 .08 .12 .16 0.20

i a/ z .x. 2d

FIG. 5.3-2: C;OMPARISON BETWEEN BISTATIC AND MONOSTATIC CROSS
SECTIONS OF A TEN TO ONE (c/b 10) PROLATE SPHEROID FOR THREE

FLIGHT PATHS NORMAL TO LINE JOINING TRANSMITTER AND RECEiVER
(Altitude d/ 25)
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-- 0, 12d
Monostatic

3 X/ 0_2d!

10 2d

C0 •---1--*-

-- ,,:.....: S 'Bistatic

10

B isai

10.1

y/ d

FIG. 5.3-3: COMPARISON BETWEEN BISTATIC AND MONOSTATIC CROSS SECTION
OF A TEN TO ONE (c/b = 10) PROLATE SPHEROID FOR LOCATIONS RESTRICTED

TO AN ALTITUDE EQUAL TO 0. 06 TIMES THE DISTANCE BETWEEN TRANSMITTER
AND RECEIVER AND AT A ?IXED DISTANCE FROM THE "CROSS OVER" LINE
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Sy/ d
Note: a- = 0 f = ory/d =0.5

t B1.6B' _spheroid 0 y,.1d)

1.4 2 /°...1

v/d/

1.4- MI r a I II

1.2 i2 I1oM/aB 3 1/2 5
• 1/5,.< aM /c, /,B/2 f- ;j if

1.0 // 1 7 70

J 8 /27!TaB~

.6
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*0 10 20 30 40 50 60 -70- 80g

FIG. 5.3-4: COMPARISON OF BISTATIC AND MONOSTATIC CROSS SECTIONS OF A
TEN TO ONE (c / b = 10) PROLATE SPHEROID FOr. LOCATIONS ABOVE THE LINE
JOINING THE TRANSMITTER AND RECEIVER AT AN ALTITUDE OF 0.1 d WHERE

THE DISTANCE BETWEEN TRANSMITTER AND RECEIVER EQUALS 2d AS A FtTNC-
TION OF THE "CROSS OVER POINT' AND THE ASPECT I

103



In Figure 5.3-5 we show the case in which shadowing leads to a larger

bistatic return than the monostatic return. We see from thF Figure that in the

bistatic case reflections are received from both the fuselage and the wing tank

while in the monostatic case the fuselage is in the shadow of the wing tank.

Figure 5.3-6 displays the type of situation which will lead to a much

larger monostatic cross section than the bistatic cross section. We see from

the figure that for the nose-on case (monostatic) reflections will be received

from the fuselage, all the engines, and all of the wing tanir%. In the bistatic

case illustrated; however, only the return from the fuselege is received. The

energy which is incident upon the wing engines and tanks on the left is re-

flected away fr-)m the bistatic receiver by the fuselage and the fuselage

shields the wing surfaces on the right so that none of the incident energy

reaches these surfaces. Thus we see that, in this case, if the bistatic angle

is much larger than 400 (it is about 900 in Figure 5.3-6) we would expect

shadowing to greatly reduce the bistatic return.

These two Figurea (5.3-b and 5.3-6) indicate why one must be careful

in applying the theorem of Section 5.1 to a problem involving the determina-

tion of the bistatic cross section of a complex shape.
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FIG. 5.3.5: SHADOWING EFFECT ON BISTATIC VS: MONOSTATIC
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FIG. 5.3.6: SHADOWhING EFFECT ON BISTATIC VS. MONOSTATIC
CROSS SECTIONS ILLUSTRATION It

106

I/I



6

THE COMBINATION OF THE COMPONENT CROSS SECTIONS

Having completed the first two steps of the theoretical method, one

is then presented with the problem of properly combining these component

cross sections to obtain the estimate of the cross section of the complex

body itself. As a result of the first two steps we have, for any given com-

bination of aspect angle, wavelength, and polarization, N components for

$ which cross sections have been computed, i.e., we have the set of values

a lI , a 2 ' a 3 P . . . . . . I a N .

In considering the proper manner in which these component cross sections

should be combined we first must consider the question of shadowing effects.

When one body lo in the shadow of another, the effect that the shadow

has on the scattering properties depends upon the parts of the body which

are in shadow. In general, the cross section of a body is mainly determined

by the returns from those parts of the body giving specular reflections and/ or

from the discontinuities on the body surface. Thus, if these portions of the

body are in shadow, then that component will not contribute significantly to

the cross section of the complex of simple shapes making up the aircraft or

missile under study. Conversely, If these critical portions of the body are

not in shadow, then that component will contribute to the cross section of

the aircraft (or missile) just as if there were no shadowing at all.
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Having taken shadowing effects into account, we then have N scatterers

to consider and thus N values of cross section to consider. There are two

methods of combination which we shall consider; both of them have their

limitations and both have been found to yield results which are in good agree-

ment with experimental results. One of these methods of combination involves

the consideration of the fact that these N scatterers are located at different

distances from the radar and involves the attempt to determine the relative

phase angles between the returns from these N scatterers. This approach

leads to the following expression for the cross section of the entire body; we

denote this expression for the cross section by ap (cross section by relative

phase):

N 12
P Al exp (i P (6.1)

j= 1

where a, = the cross section of the jt- component and j = the relative phase

angle associated with the jt. component. The magnitudes of the are de-

termined by the expression shown in Figure 6-1. Thus, in this approach it

is necessary to determine estimates of many additional distances from the

aircraft drawings. As can readily be seen from the expression for the Pi.

their values are directly dependent upon the ratios d/>,, and it is obvious

that for a large aircraft at small wavelengths it might be impossible to

measure the d from the aircraft drawings with suficient precision. In addS.-

tion to this difficulty in measuring the d (and thus the P,), it is to be noted
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FIG. 6-1: DETERMINATION OF THE RELATIVE PHASE ANGLES

that an aircraft vibrates to some extent while in flight and this vibration

could suffice, in many cases, to effectively change the valucs of the OF

Also, as pointed out in Section I in connection with the question of trying

to obtain extreme precision in theoretical values for the radar cross sec-

tions of aircraft or missiles, minor variations between two aircraft of

the same model designation might suffice to effectively change some of

the 0 . All of these facts tend to discourage the use of this method of

combibation.

As an alternative to this method of combination we have what we

refer to as the random phase method of combination which yields the
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"average" radar cross section. This method is based upon the assumption

that the many different P, are randomly distributed between 0 and 2z (after

each P, has been placed in its equivalently smallest form using the fact

that exp(i 3j) = exp (iqP - 2ii) ); then upon averaging over the P. we obtain

as our expression for the "average" cross section

at a . (6.2)

'4=
Associated with this method of approach we can estimate the amount of

possible deviation from the average cross section, a', by employing the

WMS spread. This measure of the possible variation in cross section due

to relative phase effects leads to the following bounds on the cross section

a' + S (6.3)

where
2 N 2  N

S a( a
j =l j =1

The random phase method which uses the average cross section

section and the RMS spread is designed to give estimates of the amount by

which the cross section might deviate from the average value due to phase

effects. On the other hand, the relative phase method of combination is

j Jesigned as a means of estimating not only the amount by which the cross
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section deviates from the average value but also the location (in aspect or

wavelength) of the relative peaks and nulls.

Which of these two methods of combination to be chosen for a

particular problem would depend upon the purpose of the calculation. If

one were interested In finding an order-of-magnitude estimate of the cross

section as a function of aspect for some fixed wavelength or as a function

of wavelength at some fixed aspect, then the random phase method should

be adequate. If, on the other hand, one should happen to be interested in

determining the manner in which the cross aection might vury (due to phase

changes) with aspect at a given wavelength or with wavelength at a fixed

aspect, then the relative phase method can provide information of considerable

interest. It is true that the precise determination of the is often impos-

sible and in such a case one could not place much confidence in the results

obtained. However, even in this case one can obtain &er e idea of how the

Oj will change with aspect (at a fixed wavelength) or wavelength (at a fixed

aspect) and thus, if one is only interested in determining the type of oscil-

lation in cross section to be expected, the relative phase method can yield

useful data even though precision is lacking in the determination of the

Of course, if the ratios, d / X, can be determined with suffic!ent accuracy

so that the were known to, say, two decimal places, then the relative

phase method will yield fairly good estimates as to the location of the relative

peaks and nulls.

ill
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The random phase method of combination has been applied in the past

to the determination of the radar cross sections of many different aircraft

and missiles and the results have been found to be in good agreement with

experimental data (the two sets of resu.ilts, theory and experiment, agreeing

in almost all cases to within 2 to 10 ab with differences greater than 6 db

occurring, for the most part, only in the vicinity of an experimentally de-

termined peak or null - a situation which can usually be traced to an extreme

type of phase effect).

The basic premise that the cross section of an aircraft (or missile)

can be estimated by (1) breaking up the aircraft Into its components, (2)

determining the radar cross sections of the components, and (3) adding the

component cross sections tc obtain the cross section of the entire body, has

beeui checked out experimentally. The Air Force Cambridge Research Center

applied this process on a missile shape (about three wavelengths long and

1.25 wavelengths thick). The cross section of the entire missile was first

determined experimentally, then the cross sections of the components were

determined (again by experiment% it was found that the sum of the component

cross sections (upon taking shadowing effects into account) was approximately

the same as the cross section of the entire body.

ro obtain some idea of how the relative magnitudes of the a effect

the estimates of oscillation due to phase changes either through the use of

the random phase method or the relative phase method let us give a little

11i



attention to the cases N 2, 3, 4. In doing this let us assume that the a

have been ordered according to magnitude as follows:

L~aI ai 2

So1  aa2  3 , or

22

with the cross sections normalized so that a1= 1 M 2

For the case of N = 2 we have considered the cases of a2  1o 1.5,2

2, 4, and 9 m2 . The average cross sections, the RMS spread, the relative

phase maximums, and the relative phase minimums have been computed; the

results obtained are shown in Table 6. 1. We see from the table that the

PJ •magnitude of the possible variation from the average is adequately predicted

by the RMS spread in all cases if a2' a ) 4 and is not adequate in other

¶ •; cases only if the Pj are such that cos(P - ) is negative and close to -1.

2

For the N = 3 case we have examined a variety of different values

of the a. and in addition to the quantities determined for the N =2 case we

have also determined the relative phase minimum for the special case of

cos (P - 3)P 0. These results are shown in Table 6. 2. An examination

of this data indicates that the maximum is adequately predicted through the

use of the RMS spread and that the minimum values are also adequately

predicted by the RMS spread if the phase angles P2 and P3 are such that

cos •2 "•3)is non--negative.

The N z 4 caur, wa considered in a simflar manner and the results

obtained are shown in Table 6.3; in this case only the relative phase minimums
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%ere calculated in the relative phase consideration of the problem since it has

alread\ been observed in the N z 3 case that the greatest differences in the

two sets of estimates occur in the vicinity of relative nulls.

a1 02 The RMS Spread at The Relative-Phase Spread

1 1 0.59- 3.4 2 0 - 4.0

1 1.5 0.77 - 4.2 2.5 0.05 - 4.9

1 2 1.0 - 5.0 3 0.17 - 5.8

1 4 2.2 - 7.8 5 1.0 - 9.0

9 5.8 -14.2 10 4.0 - 16.0

TABLE 6. 1: RELATIVE PHASE AND RANDOM PHASE FOR N = 2 (a in M )

a, 2- The RMS Spread a' The Relative-Phase Relative Phase

Spread Min. cos(0 2 -0 3 )0

1 1 1 0.55- 5.45 3 0 - 9.0 0.18

1 1 9 4.84- 17.2 11 1 - 25 4.7

1 1 49 36.9 -65.1 51 25 - 81 37

1 2 2 1.0 9.0 5 0 - 15 1.0

1 2 9 4.38- 19.6 12 .36 - 29 5.4

1 2 49 34.7 - 69.3 52 21 - 89 38

1 4 4 2.07- 15.9 9 0 - 25 3.3

1 4 9 4.10 -23.9 14 0 - 36 6.9

1 4 49 31.5 -76.5 54 16 - 100 40

TABLE 6.2: RELATIVE PHASE AND RANDOM PHASE FOR N 3
(a in mi)
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RMSRelative Other

y1 02 a3 a4 'RS Spread Phase Relative Phase Minima
Minimum cos(f 3 -0 4 ) =os(0 3 -0 4 ) =

1 4 81 100 186 52 - 320 0 130 256

1 4 64 100 169 49 - 289 0 113 225

1 4 49 100 154 48 - 260 0 98 196

1 4 36 100 141 48 - 234 1 85 169

1 4 25 100 130 51 - 209 4 74 144

1 4 16 100 121 55 - 187 9 65 121

1 4 9 100 114 60 - 168 16 58 100

TABLE 6.3: RELATIVE PHASE AND RANDOM PHASE FOR N 4

The relative phase minima appearing in Table 6.3 were determined by

employing equation (6.1) to obtain

a I 10 +,/a3 e 0 3-4) + 2 e0•2-4) + e 2

Thus, f if3 - 04 = 2nw, we have

orP I7 +vla731I2 and

If P3 - -4 (2n+'0)w/2, we have

2

The material presented in these three tables clearly indicates how

highly dependent the relative phase estimate of the cross section is on the
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phase angle between the two largest contributors. If one is sure that the

relative phase angle between the two largest contributors is such that its

cosine is non-negative, then the random phase method of combination

(average cross section plus the RMS spread) will suffice as a means of

estimating the range of the possible variation in the cross section.

It is of some interest to consider the case in which the two largest

contributions are of equal magnitude. Let us assume that of the set of N

values of cross section the two largest are a 1 and a2 and that a 1 = a 2 .

We may place equation (6. 1) in the form

N N-1 N
ap an +2 Jaak Cos(On - k). (6.4)

n=1 n=1 k=n+1

Under the conditions we have imposed, equation (6.4) may be placed in the

form
N

a~ P2a1 + 2a1 cs( + 2 V'Wj- 1ap-2l +2uiCos (01I- 02)+ 2 Ea • k (cos(Pl1-Pk)+C°S(P2-Pk))

k =3

N-i N

+ a + • 2 / 67 cos (P-Pk). (6.5)
n=3 n=3 1

We readily see that if 01 - P2 = (2n+l),, then the entire first row of

the right side of equation (6.5) will reduce to zero and the magnitude of

a is determined by the role played by the remaining a (n 3,4, ..., N).
11n
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7

ILLUSTRATIVE EXAMPLES

7.1 Radar Cross Oection of a Missile

In this sectiorn we shall Illustrate the theoretical method for the cal-

culation of the radar cross section of a missile or an aircraft by determining

the radar cross section of the fictitious missile shown in Figure 7.1-1. We

will note from Figure 7.1-1 that this rcissile consists of a paraboloid faired

into an ogive which in turn is faired into a cylinder; four fins are mounted in

the back. The fins are taken to be rectangular in shape in the form of flat

plates with sharp edges tfor simplicity we shall assume that these edges are

in the form of wires having a radius of X/85). The calculation shall be per-

*' formed at a wavelength of 1 ft (this choice of wavelength will permit us to

illustrate both methods of treating wires discussed in Section 4.4). We shall

consider two polarizations: vertical polarization - the case in which the

E-vector is in the plane determined by the direction of incidence and the

z-axis, and horizontal polarization - the case in which the E-vector is normal

to this plane. The cross section will be determined for two different values
0 oof (= and 45°) as a function of 8.

We observe from Figure 7. 1-1 that there are the following components

to be considered:

(1) the paraboloid section of the fuselage, oa (This component will

0 0
contribute for 0 ( 0 < - 76.),
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(2) the ogive section of the fuselage, C2 (This component will

contribute for r,., 76° 0 - 0% 90°),

(3) the cylinder section of the fuselage, a 3 (This component will

contribute for 90P0 < <180 when :: 00 and for 0°0 < Z 1800

when 0 is between 00 and 900; we shall assume that the rear

of the fuselage consists of one sharp rim in the form of a loop

of radius 3 ft. with the "wire" having a radius = X/85.),

(4) the fin in the + x, z-plane, a4; there are four parts of this

component to be considered:

a = the contribution from the leading edge,4, 1

a = the contribution from the side, edge,4, 2

a 4 = the contribution from the trailing edge, and

a = the contribution from the flat surface,4, 4

(5) the fin in the + y, z-plane, a (We have the same four parts to5

consider as in a 4 .),

(6) the fin in the -x, z-plane, a 6 (We have the same four parts to

consider as in a4 ), and

(7) the fin in the -y, z-plane, a 7 .(We have the same four parts to

consider as in a4.

To determine the magnitude of a 1 we make use of equation (4.10.1)

and we see that this contribution is independent of both wavelength and polariza-

tion. 'hus we have

r
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4 2 0a1 (7r/4)sec 0 ft for 0°•0 < 760. (7.1.1)

For a we make use of equation (4.6.5) and again we see that the*2

contribution is independent of both wavelength and polarization. We have

2 0oa = 33v (33 - 30 csc0) ft for,-- 76 <0 <90. (7.1.2)

To determine the magnitude of a 3 we must consider three cases;
0=90o 0 -180, and 0 #900 (but less than 1800). For 0 =909 we
employ equation (4. 4. 3) and thus we have (since a = 3 ft. and X =1 ft.)

a 3 =6rL2 for 0 =900. (7.1.3)

When = 00, L = 2Oft. andwhen 0° <90o° L = 24ft.

For 0 ý 900 (but near the broadside aspect) we make use of equa-

tion (4.4.4); we note that since the front of the cylinder is faired into the

ogive, we have only one such contribution. Thus for this range of 0 we have

(since X= 1 ft. and a = 3 ft.)

3 sinO
a 3  ft2  

(7.1.4)3 8rcos2 0

We observe from Figure 4. 4-8 that the size of the cylinder (in terms of X)

Is such that these contributions are essentially independent of polarization.

The return from the rear of the cylinder (the sharp wire loop rim) is not

independent of polarization as can be seen from the material of Section 4.5.
The magnitude of this contribution is determined using equations (4.5.14)

and (4.5. 15). 
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A graphical presentation of the contributions from these first three

components is given in Figure 7.1-2. The data shown in this figure will

serve as a guide in our considerations of the fin contributions.

For convenience in the following consideration of the fin contributions

we shall use the notation ui (6, 0). Let us first consider the flat plate

contributions which will appear onlyv for - 00 and 0 = 900. We have from

: equation (4.7.1) that

3 2
3.22 x 10 ft. (7.1.5)

In the consideration of the wire contributions we note that for the shorter

wavelengths we could use either the material of Section 4. 7.1 or the thin wire

material of Section 4.4 since both are based on the Chu formula. However

since we are dealing here with wires which are either one wavelength or four

wavelengths tong we must use the wire theory of Section 4.4. Before we

examine the individual magnitudes of a 4, o" 5, a 6, and a 7, let us consider

the two wires involved.

Employing the Chu formula with the radius of the wire equal to 1/85

of a wavelength and assuming that the E-vector is in the plane determined by

the direction of inc~dence and the wire we obtain an estimate of the maximum

return from the side edges of the fins, that is from the 4 ft. edges. This

result is shown in Figure 7,1-3 as a function of the "wire aspect angle" a.
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r (As is shown in Figure 7.1-3 the angle a is the angle between the direc-

tion of incidence and the wire.)

The leading and trailing edges are 1 ft. long (that is they are con-

sidered as one wavelength wires). Thus we can employ the estimate of

the return given in Figure 4. 4-7 together with equation 4. 4. 9 to obtain the

estimate from these 1 ft. edges. This estimate (for the case in which the

E-vector is in the plane determined by the direction of incidence and the

wire) is also shown in Figure 7.1-3.

The curves shown in Figure 7.1-3 suffice to determine the edge con-

tributions for the aspects confined to the - 0° plane. In the horizontal

polarization case we can obtain a4, 2' a 5, 2' and a7,2 directly from the

4 ft. wire curve of Figure 7.1-3 noting that for these edges a = 0; the

magnitude of a 4 , 1 we obtain from the 1 ft. wire curve noting that a = 900 -9

(a6, 1 = a4, 1 contributes only at 0 = 0Y); the magnitude of a 4,3 anda4,3 6,3

we can read from the 1 ft. curve noting that a = 90o + 0. In the vertical

* polarization case for 0 = 0° the only edge contributions come from the

[ leading and trailing edges of the fins in the yz-plane, i.e. a 5 , 1 , a 5 3 ,

a and a 7 ,3, these four contributions are constant for all 6 in the

interval 00 V 0 < 180° and are given by the a = 900 case for the 1 ft. -.,ire

in Figure 7.1-3. (We note that a and a must be taken as zero at
5,3 7,3

G 0°, due to shadowing, and for similar reasori a 5 1 and a 7 1 must be

"taken as zero at 8 1800.)
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The • 450 case requires a little more analysis due to more com-

plicated relations between the 6 and * aspect angles and the variation in

the polarization angle. In the horizontal polarization case we can determine

the magnitudes of a 4, 2 Rnd a 5, 2 as was done above. The treatment of the

leading and trailing edges is done as follows. First we determine the aspect

angle a as a function of 0. A brief examination of the geometry indicates that

the relation required is cos a = sine This relation is shown graphically in

Figure 17.1-4. The polarization factor, we note from Section 4.4, is the fourth

power of the cosine of the angle between the E-vector and the p.anq determined

by the wire and the direction of incidence. To determine the magnitude of

this polarization factor we first find the unit normal to the plane of the wire

and the direction of incidence and then by taking the dot product of this vector

with the E-vector (unit vector) we obtain the cosine of the complement cff the

angle we are seeking. The final polarization factor so obtained is presented

graphically in Figure 7.1-5. These two relations (Figures 7.1-4 and 7.1-5)

together with the data presented in Figure 7.1-3 makes it possible for us to

quickly determine the magnitude of the contributions of the leading and trail-
0

ing edges for this 0 =45 case. We have to consider a4, 1 anda5,1 for

0°0 < e<180, a4,0 
3 and a 5,3 for 0 < 0 < 180°, and we must take into

account a6,3 and a 7. 3 for all 0 between 900 and 1800. The magnitude of

these contributions as a function of the aspect angle 0 and the polarizati m

is shown in Figure 7.1-6.
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FIG. 7.1-4: 0 VS a• FOR THE TREATMENT OF THE LEADING
AND TRAILING EDGES FOR THE 0 = 45°0 CASE

With the above information we are now in a position to assemble these

component cross sections to obtain the estimate of the cross section of the

entire missile. The summaries of the component cross sections are given

S[ in Tables 7. 1. 1 through 7,,1. 4. In this illustration we shall not go beyond

L this point; the "average" or "random phase" cross sections are given in the

tables. An illustration of the relative phase approach and the RMS spread

will be given in Section '1. 1. 2 where an illustrative example for a manned

aircraft to discussed.
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FIG. 7.1-6: CROSS SECTION CONTRIBUTION FROM LEADING (OR TRAILING)
EDGE OF FIN FOR ASPECTS IN 450 PLANE

7. 2 Radar Cross Section of an Aircraft

In the illustration given in Section 7.1 we started with a drawing of

the configuration and went through the entire operation up to the point of

combining the component cross sections.. Here, in the aircraft illustration

we shall start with the component cross sections %nd discuss the combination

4 -

of these component cross sections.
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The only essential difference between the prob!em of determining the

radar cross section cf a manned aircraft and the corresponding problem for

a missile is the number of componerts to be considered.

Figure 7.2-1 displays the results obtained for a typical large jet

aircraft. One will note 'hat there are many significant contributors to be

considered and that over a wide range of aspects we do not have a single

large contributor. In discussing the combination of these component cross

sections we can use a fixed wavelength and let the aspect vary or we can

consid'pr a fixed aspect and let the wavelength vary. Lt us use the latter

approach and concentrate on the nose -on aspect, that aspect at which all of

the contributors are of approximately the same maguitude. Let us assume

that there are four engines a distance d1 back from the nose and two other

engines a distance d2 back from the nose; thus from the data shown in Figure

7.2-1 we would have four essential contributions to consider:

(1) the contribution from the fuselage, a 1 ,

(C') the contribution from the group of four engines, a 2 ,

(3) the contribution from the group of two engines, a 3 , and

(4) the contribution from the group of two wing tanks, G4"

The type of variation one can obtain between the relative phase and the

random phase methods will be adequately illustrated if we consider a wavelength

variation from about ) = 0. 69 m to X =. 72 m. Over a wavelength range Wi this

magnitude the cross sections of the individual components will not change
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an appreciable amount; thus, let us assume that they are constant over

this range of X and have the following values:

2 2 2 2
a1 =0.32 m; a 2  6.9 m; a 17m; 1-1.0 m.

" liLet us further assume that upon a study of the aircraft drawings (applying the

method shown in Figure 6-1) the following values of the phase angles have been de-

6 termined
* I~ = 66. 8 r/X ; I - =30.2w/)X

ii 21 112 P3

101 - =3 - 36.67r/\ X ; 2 - P4 = 14.81/)

= 52,07/= -;4 = 15. 4,r/X.

* Applying equation (2.4) we can thus obtain the cross section as a function oft
wavelength taking these relative phase relations into account. The result so

obtained (shown as 4a vs. X) Is presented in Figure 7.2-2. The average

cross section and the RMS spread is also shown in Figure 7.2-2 for comparison

purposes. We see from Figure 7 2-2 that even for this case, in which we have

a large number of contributors having approximately the same cross section,

the variation due to changes in the relative phase very seldom exceeds the

variation predicted by the RMS spread. Over the range shown in Figure 7.2-2

the cross section dips below the RMS minimum for only about 19% of the

wavelengths considered. As an illustration of the manner in which the two

Of course the wavelength is measured in the same units aa the di, in this

"case the unit is meters.
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methods of combination (relative phase and random phase) compare for a

fixed wavelength and varying aspect we present in Figure 7.2-3 the results

obtained for a missile; the results are displayed on a relative scale as a

function of aspect and it is obvious that the RMS spread calculation suffices

for almost all of the aspects considered.

It is important to note that since a missile has fewer components than

Sa mnanned aircraft it is to be expected that the relative phase results would

lie outside the RMS spread more frequently in a missile calculation than they

would in an aircraft calculation.

""102-

RMS spread
Calculation

-S *• 101

0
;, -., 00

Relative Phase
Calculation

__ _ __ I__ _ _

S10-1_

0 10 20 30 40 50 60

Aspect Angle (azimuth in degrees)

FIG. 7.2-3: RADAR CROSS SECTION OF A MISSILE - COMPARISON OF
RELATIVE PHASE AND RANDOM PHASE (RMS SPREAD) RESULTS
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8

CONCLUSIONS

We have attempted in this report to present a detailed outline of the

procedure for calculating the radar cross sections of aircraft and missiles

which has evolved at the Radiation Laboratory of The University of Michigan

during the past several years It is our hope that this report will serve as

t. a handbook for the calculation of such radar cross sections.

Examples of the application of this process to the determination of

the radar cross sections of various aircraft and missiles will be found in

many of The University of Michigan reports in the Studies in Radar Cross

Sections series and in the reports which supplement that series. Since each

of these documents is a nt classified we have included the illustrative

examples in Section 7, It would be of considerable value to examine the

details of some of these earlier computations. The documents which contain

these examples are Studies in Radar Cross Sections XII, XIV, XV, XVII,

XVIII, XIX, XX, XXIL and XXIV. The documents in the supplementary

series which would be of interest in this connection are the reports 2476-1-F,

2541-1-F, 2550-1-F, 2200(01)-1-T, 2500-1-T, and 2660-1-F. (See Appendix H.)

It should be noted again that this process is designed for use when the

cross sections are desired to within 2 to 10 db and experience has indicated

that the method will yield results which differ from experimentally determined
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values by less than 6 db for almost all combinations of wavelerngth, polariza-

tion, and aspect. This is illustrated in Figures 8-1 and 8-2. The first

displays a comparison between theory and experiment for a missile shapeI and the second displays a comparison for a manned aircraft. A 10 db spread

is shown in Figure 8-2 since (1) there is a 20 /oY difference in the frequencies

employed in the theoretical and experimental work, (2) the theoretical analysis

on this aircraft was one of the first applications of the method and thus did not

contain the refinements now available, and (3) the RMS spread was not computed

in this particular theoretical study. Figure 8-2 also contains an interesting

observation relative to the experimental approach. One will note that experi-

mentally onF can obtain as much as an 8 or 9 db difference between the cross

section on one side of the aircraft and the cross section on the other. That

s, in terms of the coordinate system shown in Figure 8-3, one finds experimen-

tally that a(O', (') and a(6', -() may differ by as much as 8 or 9 db even

though the aircraft is symmetric with respect to the xz-plane. The theoretical

approach would, of course, imply that for an aircraft which was symmetric

with respect tc the xz.-plane a(6', •) =a(6', -(').

The material presented in this report applies for perfect conductors.

If the surface was not a perfect conductor but one having a dielectric constant

equal to c , then we could employ the following relations:

In the geometric optics region:
%ldel. -( 2 2 (8.1
a i

p. cond.
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Theoretical Experimental
RMS spread Data
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2'0 40 60 80 100 120 140 160 18

Azimuth Angle (in degrees off nose-on)

FIG. 8-1: RADAR CROSS SECTION OF A MISSILE BODY - A COMPARISONi, BETWEEN THEORY AND EXPERIMENT
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In the RaN leigh Region (sphere result):

adiel. 4 2 (8.2)
a 9 C+ 1

p. cond.

A plot of equation (8.1) :s given in Figure 8-4 from which we see that in order

for the cross section of a dielectric surface to be a factor of ten Less thn that

for a surface which is geometrically the same but a perfect conducting surface,

the dielectric constant must be greater than about 0. 5 but less than about 2.

In the case of equation (8.2) it is of interest to note that for large values of

E the ratio approaches 4/9 and as E --b 0 the ratio a diel cond. approaches

the value 1/ 9., Since in the application of this theoretical method most of the

body components considered are in the optics region, the information presented

in Figure 8-3 will suffice for most cases.
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° diel. /°perf. cond. _ _

INI

10 -1_ _ _ _ 
_ _ _Ai

10-2 _ --_

-•-- -- .- --____ - I __ _ __ _,__ __ _

10 ---- 2

0 100 10 1

FIG, 8-4: CROSS SECTION OF A PERFECT CONDUCTOR COMPARED TO THE
CROSS SECTION OF THE SAME BODY MADE OF A DIELECTRIC (CONSTANT =9)
AS A FUNCTION OF THE DIELECTRIC CONSTANT (GEOMETRIC OPTICS REGION)
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A PFNDIX A

COMPLETE SCATTEAING MATRICES AND CIRCULAR
POLARIZATY[ON CROSS SECTION-

1

SCATTERING MATRICES

i general, in radar scattering problems we deal with transverse

fields, i. e. vector fields whose components in the direction of propagation

vanish, in that first the incident radiation and finally the scattered radiation

at large distance from the scattering center are described in terms of such

fields. There is a certain freedom in the description of these transverse fields

which we will investigate in more detail.

The scattering of electromagnetic radiation may be described quite

generally as follows: For simplicity, assume an incident plane wave and choose

a coordinate system such that the negative z-axis is in the direction of propaga-

tion of the incident wave (Fig. A-1). S~nce the incident electric and magnetic

vectors lie in a plane perpendicular to the direction of propagation, the incident

radiation is completely specified in free space by the direction of propagation

andt the x- and y-components of either the electric or magnetic field. After

diffraction by an obstacle the scattered radiation in the "far zone" is then com-

pletely determined by the configuration of the sratterer, its electrical properties,

A
and by the incident radiation. If k is a unit vector in the direction of the incident

A
wave and k is a urit vector in the direction of the observation point,
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A

tI.e far field in the direction k is determined by the type of obstacle

and the incident radiation, or, in symbols,

As = S (A. -I
=Skok ) EA II

ko k

A ..&s
where E_ is the incident field moving in the direction k , EA is the scattered

k o
A AA

field moving in the direction k0 and S(k k ) is a matrix with continuous indices

A A
k and k which depends on the obstacle and the wavelength of the radiation.
0

From its analog in quantum mechanics, the matrix S is called the scattering

matrix or, more briefly, S-matrix.

1.1 Scattered Field in S-Matrix Notation

If the coordinate system is rotated so that the new z-axis lies along the

A
direction ko the incident field will be specified by three components, but the

A
scattered field in the direction kowill be specified simply by the x- and y-

components since the radiation field is transverse. Symbolically, this rotation

R is expressed as

-&-l

An immediate condition on the new S-matrix RSR is then that it leads to zero

z-component of the scattered field.

The maximum advantage of using the S-matrix notation is obtained

when circularly or elliptically polarized incident radiation is considered.

Before going into this, however, it is desirable to give a brief review of the

polarization phenomenon.
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Consider a plane wave moving along the z-axis as in Figure A-2. If

the electric vector is restricted to lie in one plane through the z-axis, say the

yz-plane, the wave is said to be plane or linearly polarized since the projection

of the locus of the electric vector on the xy-plane is a straight line.

If the electric vector is no longer required to lie in a single plane, then

its projection on the xy-plane will no longer be a straight line but will in general

1 describe an ellipse in time as shown in Figure A-3. The case of circular polar-

ization occurs when the ellipse degenerates into a circle as shown in Figure A-4.

A A
In particular, for backscattering, ko --t . An incident elliptically

polarized field can be expressed in terms of Cartesian coordinates and hence,

as before:
-SA A .

E A S(-k, k )E . (1..2)
-k k

It is possible to express the fields in terms of an elliptic basis by a coordinate

transformation, U, such that

-- -*i (1.1.3)

k k

where is the incident vector in an elliptic basis. Then

A A -U1 _.
EA = S(-k , k ) U EA -= S(-k, k ) U . (1..4)-k k k

The scattered field is transformed by the same transformation so that in the

elliptic basis,

UU U S(-k , k ) U (1.15)
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This then gives a new scattering matrix U S U- 1 which is used for the case in

which the incident and scattero - fields are referred to an elliptic basis. Since

the fields describing the incident and backscattered radiation lie in the same

plane the two-dimensional transformation U gives the change of basis from linear

to elliptic for both the incident and backscattered fields.

Thus, by using the S-matrix formalism, it is necessary to determine only

the scattering for linear polarization and the transformation giving the change of

basis to the particular basis of interest.

1.2 S-Matrix in Terms of Fixed but Arbitrary Basis

In order to be explicit, let p(H) and P(V) be unit orthogonal vectors*; these

vectors define, respectively, directions of horizontal and vertical polarization

of an electric vector. A vector E may be written in terms of this basis as

/A

SE - E(H)(H)+E(V) (V) = (E(H), E(V A(V) - E'(HV) p(HV),

where E'(HV) designates the transpose of the column E(H)H)

If p(A) and ý(B) are an arbitrary pair of unit orthogonal vectors

co-planar with •(H) and p(V), then they must be obtainable from $(H) and D(V)

by a unitary transformation* * *

Ort.hogonal is to be interpreted in the sense that two vectors ý(A) and O(B)
are orthogonal if their product N(A)• -*(B) Is zero, where the asterisk
indicates complex conjugate; unit in the sense that a vector p(A) is a unit
vector if the product $(A). -*(A) is 1.

* Horizontal will mean tangent to the earth with horizontal, vertical, and
direction of propagation being mutually orthogonal.

u(IJ) ia defined as the product ;(I). -"J). Note here also thut u* (LJ) u(JI).
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u(AH) u(AV U(AB;HV), U1 (AB;HV) U*'(AB; HV) U(HV;AB),

A(BH) u(BV)

i.e.,, ^p(AB) = U(AB;HV) P(HV), where the asterisk indicates complex conjugate

of each element of the matrix and the prime indicites the transpose of the matrix.

Since the AB system will in general be used to describe some elliptical

polhrization, it is preferable to use distinct systems of unit vectors to specify
Im

the incident and scattered fields. This is done so that right-band elliptical polar-

ization may have the same sense with regard to the coordinate system for incident

radiation as it does with regard to the coordinate system for scattered radiation.

So if

01 (AB) = U(AB;HV) f(HV)

is prescribed for the incident system, the desired similarity of sense for the

two coordinate systems is accomplished by writing

ASAp (AB) = U*(AB;HV) p(HV)

"for the scattered system. Thus pS(AB) = pi*AB).

Ar incident vector E may be written in terms of either the basis p(HV)

Aior the basis p (AB):

•i =:Ei(HV) A(HV) - E'i(AB) i(AB.

From this relation it easily follows that the two sets of components of Ei are

connected by EI(AB) -= U* (AB; HV) E'(HV) o(1. 2. 1a)

Similarly for a scattered vector s the relation between components is

ES(AB) tU(AB;HV) Es(HV) . (1.2. Ib)
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Since both the incident and scattered electric vectors are expressible in

terms of either unit vector basis, there will be four transformations; i. e. ,

scattering matrices, relating the components of the incident vector for either

basis to the components of the scatte:ed vector for either basis.

ES(H{V) = S(HV; HV) Ei (V) , (1.2.2)

ES(AB) = S(AB; -!V) E i(HV) , (1.2.3)

*, ES(HV) = S(HV; AB) E'(AB) , (1.2.4)

ES(AB) = S(AB; AB) Ei(AB) , (1.2.5-

where the two indices in front of and following the semicolon indicate

respectively rows and columns of the scattering matrix. For example, if

"equation (1.2 . 3) were written in detail, it would read*

*(S(A) 
s(AH) s(AV) E (H)

SkE(B)) = (s(BH) s(BV))(Ei(V)

-The elements of these matrices are associated with effective radar

cross section a- by the following aefinition:

a- = lim 47rr2 ,(2.

where 71 is a unit vector denoting receiver polarization. For example, if

•'i =;(H) and A Z ý(V)' then

H= E8 () A(W + ES(V) O(V) = S(HH) O(H) + s(VH) N(v)

* A
In s(Ij)o pJ) designates the incident polarization.
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and

oAVH)= lrn 42= hm 47rr' s(VH)2 (1.2,7a)
r -. • p(H) r

In a similar fashion it can be shown that

2 2
o(IJ) = hrm 47r 2 Is(hW) (1.2. 7b)

These c-(IJ) will be called CROSS POLARIZATION cross sections.

Using equation (1. 2.1) in conjunction with equations (1.2.2) through

(i. 2.5), it follows that any three of the scattering matrices can be expressed

.n terms of the fourth. Thus, for example,

S(AB; HV) = U(AB;HV) S(NV;HV) U* (HN; HV) o (1.2.8)

S(HV; AB) = U(HV; HV) S(WV; HV) U*(HV; J._F) , (1.2.9)

S(AB; AB) = U(AB; IV) S(HV; WV) U*(HV; AB). (1. 2. 10)*

This means that if S(HV; HV) is known completely any scattering matrix

can be calculated from it. Since the elements of S(HV; HV) are complex numbers,

there will be eight real numbers (four magnitudes, four phases) required to

specify S({V; MI) completely. This is reduced from eight to seven because

only relative phase differences can be calculated. It is further reduced to five

*More generally, S(AB; JK) U(AB; HV) S(HV; HV) U*(HV; JK), where JK

indicates an arbitrary basis. U(HV; HV) and U*(HV; HV) have been included
above for consistency. (They are each equal to the identity matrix).
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for backscattering bpcause of thb reciprociiy theorem* and the conservation of

energy principle. **

To recapitulate, assume that s(CHH), I s(HV)I fs(VV)J ,I s(AH)i

I s(AV)l are known; from these quant4ties the differences of phases (or relative

arguments) of s(HH), s(HV), s(VH), and s(VV) can be determined; i.e., the

complete matrix
((HH) s(hW

S(HV; /rH)) = (1.2.11)

KScViq s(VV)

can be found.

Since s(IJ) and u(IJ) may be written:

s(IJ) = s(•) io(IJ)

uj) = u(.j) e

If El nd Ei2 are two given incident electric, vectors, and E and are the
respective scattered electric vectors, then the reciprocity thecrem states that

-.5 .A~i -s --L4
F91 E E2 El , or

s 1 E E2 (V) - 2 (s ix s i
E(H) EH)+E( (H) EE (()=+ E (V) E (V).

If equation (1. 2. 2) is used to state this theorem ,.-itirely ii, terms of the
components of the incid-.nt vectors, it follows that

s(IW) (E'I(V) E'(H) - Ei(V) Ei(H) = s(VH) E'(V E2 H -E(V) E'(H

S~or
s(HV) = a(VH).

From this eqaiality and equations (1.2.8), 11.2.9), and (1.2. 10), At follows that
s(U) = s(0 for I # J.

Because energy must be conserveu, it follows that

-r(KA)+a(KR) =. a(KH)+w(KV)

where K may be H, V. A, or B.
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it follows from equation (1. 2. 8) that

Is(AH) u(AH) s(HH) +u(AV) s(VH)2

-ju(AH) s(IIH)I 2 +ju(AV) s(VH) 2 +2 1u(AH) u(AV) s(HH) s(VH)'

x cos [ O(HH) - e(VH) + P(AH) - O(AV)1 . (1.2.13)

Therefore,

Cos O(HH) - O(VH) + O(AH) -(W" 1 s(A-HiA- Lu(AH) s(-THH -1' -u(AV) sVH),
2. ['(Ai)u(AV) s(HH) s(VH)

(1. 2.14)

where O(IJ) = arg s(lJ) and O(IJ) = arg u(IJ)

Similarly,

Cos [eHV) - O(VV) + P(AH) - P(AV)] = Ls(AV)I 2 u(AH) s(HV)I 21 u(AV) s(yyj).
j2 1 u(AH) u(AV) s(HV) s(VV)I

S~(1.2.15)

An expression for the difference 8(HH) - O(VV) may be obtained from

eluations (1.Z. 14) and (1.2. 15). A check for this difference can be obtained

by assulahig :hat o(AA) is known; then the difference O(H-) - 8(VV) can be

calculated directly as a function of[ s(AA) , s(HH) , s(VV) , and the u(IJ).

The above argument may be summarized in the theorem: If or(HH),

o(IWV), ar(W), ar(AH), and (r(AV) are given, then the matrix S(HV; IIV) can be

detprmined to within an arbitrary phase factor; and from S(HV; HV) any scattering

matrix can te found.
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2

APPROACH TO THE MULTIPLE-COMPONENT BODY PROBLEM

In Section 1 it was shc ,'n that for a single simple geometric shape, or

a eomplex shape considered as a unit, the scattering matrix S(HV; HV) can be

completely specified from a knowledge of the five radar cross sections o-(HH),

or(HV), T(VV), T(AH), and o-(AV).

However, in an analytic treatment of the scattering matrix for a complex

configuration consisting of many components, each of which is a simple geo-

metric shape, a somewhat different approach must be used since component-

wise calculation of cross sections does not furnish information as to phase

differences between different parts of the target. It is reasonable to assume

that for each cumponent of the scattering body expressions for certain of the

,(iJ) may be obtained directly from expressions for the scattered fields in

terms of the incident fields. Then, to find certain ar(IJ), to be specified below,

as fairly smooth functions of aspect and to minimize computational labor, an

average with respect to phase is made over the set of components of the seat-

terer. Such an averaging procedure assumes random phase relations among

scattered fields of the components, and requires a knowledge of nine* real

numbers for the determination of arbitrary 0-(IJ).

By the reciprocity relation; without reciprocity, 16 real numbers would have
to be known.
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That only nine real numbers are needed may be seen as follows: Let

/u* (HJ)\

s(IJ) = (u(IH) u(rV)) S(HV; HV) ,u* (V ) (2.1)

represent, for the entire scattering body, any of the linear relations among

elements indicated by equations (1.2. 8), (1.2.9), or (1.2. 10). The averaged

quantity s(IJ) 2is then

IsJ) 2• = s(IJ) s*(1j)

"= (u(IH) u(IV)) (3) (u*(IH) u*(IV)) S(HV; HV) x S*(HV; HV)

•u(HJ)• (HJ)

Ku* (VJ)) (2.2)

where @ indicates a direct (or Kronecker) matrix product*' **and the bar

indicates phase-averaged matrix elements. Let a, 3 denote any of the combinations

The definition of a direct (or Kronecker) matrix product is illustrated by the

?vample

allbl al blabl a12b12 a13b11 a13b12
a1 1b1 1 In1 b1 2 a1 2 b, Ai a1 b

a a1 a1 3  bll b121 ab a llb 22 a1 2b2 a l 2 b2 a1 3 b21 a1 3 b22
al a., a1 b• b ? a=ba2l

a2 1 a2  Z a23  b2 1 bzzJ a2 1b 1 1 211 1  b a2 b12 a23 bl, a2 3 b1 2

a2 1b2 1 a2 1b22 a2 2b2 1 a2 2b2 2 02 3b21 a2 3b22

In equation (2. 2) the following theorem has been used:

(ABC) @ (DEF) = (A @ D) (B (8) E) (C (E) F)

where A, B, C, D, EFare matrices of suitable dimensions. As applied in

equation (2.2) it should be nated that s(IJ) s*(IJ) 9(I.) s*(IJ).
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HH, HV, VH, VV; if s(a) = Es-m(a) where the sum is taken over the
m

set of components of the entire scattering body, then the expressions s(a)s*(O3)

in the right-hand member of equation (2.2) are given by

s(a)s*(B) -- Sm(a)s*( = ZI S(a)Sn*()

m,n mn

(2.3)

-~ i ri s(a) SnJ) I e[m&)-OU]
m, n

Since it is assumed that random phase relations obtain among scattered fields

of the components, the last sum is zero for m # n. Hence, equation (2.3)

becomes

S (a) S()Sn* () (2.4)
n

Thus to obtain an element of the form s(IJ) r r(IJ) it is necessary and

S~sufficient to know a certain set of quantities Sn(a)Sn*(S) for each component.

Since a and 0 may take any of the values HH, HV, VH0 VV it. will be necessary

to know a set of six quantities, three of which are real, three complex (eq. 2. 5).
• The matrix

i S(HV; HV) 0) S*(HV; HV -

s(HH) S*(HH) s(HH) s*(HV R s(HV) *(Hi) sNHV) s*THV)

a(H=) s*(VH s(HH) s*(VV) s(HV) s*(VH) s(HV) 9*(VV)
__(z.5)

s(VH) s*(HH) s(VHO a*(RV) s(W)' B*(-H) s(VV) s*(HV)

s(VH• s*(VW s(VH) s*(VV) s(W) s*(VH) sWV) s*(Wv)
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Is of course not a scattering matrix. It is made up of the direct product of

two scattering matrices, and will be called an S ®) S* - MATRIX.

Assuming reciprocity, and taking into account that [B (a)sn*(3)] *

n n(O ) it follows from equations (2.4) and (2.5) that it is n'ecessary and

sufficient to know the six numbers

Sn(HH)sn* (HH) o sn(VH)sn* (VW F (VV)sn* (VV)

Sn(HK)sn*(VH) Sn(HH)sn*(VV) Sn(Vv)rn*(VH)

for each n (component of the body) in order to determine an S ® S* - MATRIX

and hence the elements IslI) I

-4:
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3

INDEPENDENT CROSS SECTIONS APPROPRIATE TO
MULTIPLE -COMPONENT BODIES

It was shown in Section 2 that o-(IJ) could be obtained from the independent

set "s(VV I s(HH) s*(HV), s(HV) s* (VV), and S(VVJ S*(ffti,

In this section it will be shown how ar(IJ) can be obtained from a basic set of

nine average effective cross sections.

To do so, it is recessary to determine the most general set of basis

vetr A() of A A
vectors pA(A), 'B), in terms of j(H) aind p(V). The normalization ofP(A) and p(B)

A

requires that ( P*( A) = I and p(B) • .•*(B) 1. The most general vectors

satisfying these requiremetts are:

fkA) = e cos a O(H)+e sin a (V)

-= - e sir, Pp ) +e cos p(V)

j There is the additional orthogonslity requirement '(A)- p*(B) 0, or

-e cosasin 3+e Sinrcosa = 0.

Thus, 01 - 03 -0 4, and a = . The values of the cross sections (r(AJ)
A A -i i3

and ar(BJ) are not affected by multiplying p(A) and pB) by e and e

respectively. As a result, the most general hasi3 vectors which need be

considered are of the form

D(A) -= cosa (WI+e sinap,',, (3.1)

=(B) - slno(m +e cosoa(V)

Actually there are other volutions but they do not result in increased generality.
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The corresponding transformation matrices are:

Cosin a ei n Cos a sin a

U(AB; liV) U(C e a AB)=(3)
(-sin a e cos c-'Vsna e o

(3.2)

Using equations (1.2.8), (1.2.9), and (1.2.10), it follows that

i's(AH) = cosa s(HH))+e sinas(HV)

s(AV) = cosa s(HV) + e sina s(VV)

s(AB) = 1 sin 2a s(HH) + e cos 2a s(HV) + 1 e 2 sin 2 s(VV) .(3.3)

2 2

Taking the squares of the magnitudes of equation (3.3) yields:

Is(AH) 12 = Co IS(H H)12 + Sin 2a IS(IfV')12 + si 2a cos Y Re s*(HH) s(HV)

- sin 2a sinY Im s*(HH) s(HV) *

Is(AV)I 2 = Cos 2a I s(HV),2 + sin2a S(VV)12 + sin 2a cosY Re s*(HV) s(VV)

- sin 2a sin Y Im s* (HV) s(VV)

Is(AB)12 = 2 s a Is(Hi)I2+ cos2 Za js(HV)j2 + sin2 Za I s(VV) 2

1 sin 4a cos)Y Re s*(HH) s(HV) +1 sin 4& sin)Y Im s*(HH) s(HV)
2 2

_ I sin2 2a cos 2 Y Re s* 'HH) s(VV) + 1 sin2 Za sin 2 Y Im s* (h) s(VV)
2 2

+ sin 4a cos)' Re s*(HV) s(VV) - 1 sin 4a sin)' Im s*(HV) B(VV) ,

2

(3.4)

where Re and Im refer respectively to the real and imaginary part of the

quantity they precede.
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The squares of the magnitudes of the other elements are obtained from

the conservation of energy relations, together with the reciprocity relation

s(IJ) = slJI):

s(BH) 2 = s(HH) 2 + I s(HV)j2 _ s(AH)12

s(BV) 2 = S(HV)12 + I s(V) 2 _ s(AV) 2

Is(AA) 2 = s(AH)I2 + I s(AV)12 - I s(AB)l2

IJs(BB) 2= js(BH)12 + Is(BV)1 - sG-B)1 2 (3.5)

Fora=45 ,V =90 , letA =LandB =R. Fora=450 , Y=0°, let

A-+andB=-. Fora=450 , Y=45 , letA =A, B=P. The polarizations

H, V, L, R, +, -,A, P, being considered are shown in Figure A-5.

H (Horizontal) V (Vertical) L (Left) R (Right)

C.0/ N
A AI.

!'_ , FIG. A-R: POLARIZATIONS H, V, L, R, +, =,A, P
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Then it follows from equation (3.4) thatK S(LH)- 2  1 (HH) 2 + -S(HV) 2 - Im s*(HH) s(HV)

2 2
=(V S( -I STVv)I _ Im s*(HV) s(VV)

s (LR)I = 1 jS(HH)j2 + 2sVV>I + Re s*(HH) s(VV)

s(+fH)I12 
= S(HH) 2 +{ js(HV)j 2 + Re s* (HH) s(HW)

Is(+17)12 svI+~ sV) +Re s* (HV) s(VV)

-- H - J- +T Im s*(HH) s(V) . (3.6)

If the scattering matrix S(HV; HV) has been obtained, then from S and

equation (3.6), the cross sections -(HH), r(HV), cr(VV), r(LH), r(LV), a-(LR),

T-(+H), ((+V), and crAP) can be found. From these nine cross sections the

cross sections for all other polarization combinations may be obtained by using

equations (3.4), (3.5), and (3.6). Use of equation (3.6) in equation (3.4) gives

* o(AH) Cos 2 a sin 2a (sin)' + cosy')] r(HH)

+ [sin~a -~sin 2ca (sin'? + cos Y)] oIHV)
w (AV) = COS•a-Isi2a(iY+coy) HV

n 2

+ [sin2 - sin- •a(sin + coso ] r(VV)

+ sin Za cosy or(+V) + sin 2a sin Y u(LV) , (3.7)
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a (AB) - _ sin 2a 0( +cos 2Y -sin 2 Y) [r(HH) +r(VV)]
t I 4

+ -_sin 4a (sin. + cos a- [o(H) - cr(VV,) + s 4a n os0' or(+V) -+H]
4

+ 1 sin 4a n9in' [ o(LV) - r(LH)] + cos22a Cr(HV) + sin22 sin 2 Y' c(AP)

- sin 2 2a cos 2 Y cr(LR).

From equation (3.5):

o'(BH) = c'(HH) + ar(HV) - a'(AH)

T (BV) = ¢ (HV) + oI(VV) - o(AV)

ao(AA) = a-(AH) + or(AV) - ar(AB)

cr (BB) = ar(BH) + r(BV) - a(AB) ; (3.8)

and by reciprocity,

u- (HA) = oa(AH) , a'(HB) = oI(BH)

(r(VA) = cr(AV) , o-(VB) = cr(BV)

o(BA) = (r(AB) . (3.9)

Equations (3.7), (3.8), and (3.9) give all of the cross-polarization cross

sections of interest except ones of the form ar(AJ) where A and J are polarization

vectors from different bases. These can be obtained by using the S ®8 S* -

- MATRYX defined in the preceding section. The elements of the S () 8 - MATRIX

can be obtained from equation (3.6) and the cross section can be obtained from the

* 8 S S* - MATRl defined in equation (2.5).

- 4
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4

POLARIZATION EFFECTS AND THE PHYSTCAL OPTICS APPROXIMATION

No REPOLARIZATION effects obtain when physical optics is used in

computing the monostatic single scattering cross sections. Hovwever, the

physical optics appioximation does yield repolarization effects for monostatic

mltiple scattering cross sections.

Since th2 assumptions , of physical optics are employed in this report,

according to the r.methods of Reference A-I, to obtain cross sections for many

simple shape3 representing component parts of an aircraft, it is necessary to

consider the degree to which the physical optics approximation agrees with

experiment and with exact solutions when available.

For arbitrary directions of incidence on a general body, if any radius of

curvature of the body is of the order of a wavelength in the neighborhood of a

stationary phase point, neither the physical optics prediction of no repolarization

*Repolarization is said to occur when S(HV;HV) is not of the form ( q ).
$$x o q,

A simple and commonly used assumption for a body possessing principal radii
of curvature R, and R2 which are everywhere large compared tc a wavelength
is, as stated in rteference Aý-2, p. 462, that "... the induced currents and
fields radiated from any infinitesimal unit of area are very nearly those which
would be obtained from the same area if it were part of an infinite plane, tan-
gent w the surface at the location of the element of area. The currents and
fields on the surface are determined by the bouadary condition that the surface

S~magnetic field is entirely tangential and is twice the tangential nomponent of
S~the magnetic field of the incident wave".

mFor a detailed discussion of the assumptions of physical optics see Referencei A-16, p. 9.
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nor its prediction of magnitude should be accepted without further investigation.

Likewise in those cases where any radius of curvature is less than the wavelength,

the assumptions of physical optics make the results suspect, although other con-

siderations for a particular case may show the results to be quite acceptable.

For example, for the Poynting vector incident along the axis of symmetry of a

perfectly conducting surface of revolution, the physical optics indications of no

repolarization are valid. Such validity may most easily be seen from an analysis

of the boundary value problem involved.

¶ Since the boundary conditions may be given in terms of E alone, and since

H is given in terms of E by Maxwell's equations, the problem of a perfect con-

ductor may be stated in terms of E alone. The wave equation for E and the

boundary conditions are unchanged by reflection in the plane P containing the

incident Poynting vector and the incident electric field. Therefore, to any

solution for fs with components normal to P, there must correspond another

solution with normal ccmponents cancelling these. Since two solutions are im-

possible by uniqueness, ts must lie in P. Thus there is no repolarization. So

the validity of the application of physical optics for the Poynting vector incident

along the axis of symmetry of a perfectly conducting surface of revolution will be

a question of magnitude only.

It has bet'n observed that for the case of a cone or a paraboloid of

revolution with the transmitter and receiver on the axis of symmetry the physical

optics answer agrees both with experimental results and with the exact theory,

as illustrated in References A-7 and A-16. Further, it has been found (Ref. A-8)
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that the geometric optics fields for the infinite dihedral agree with the exact

fields for dihedral angles of 7r/n, n = 1,2,., and that the geometric and

physical optics fields are in agreement for these cases.

These results suggest that the physical optics cross section may be

expected to agree fairly well with the exact solution for a wider range of objects

than the large-principal-radii criterion would indicate.

It is, of course, not necessary to be limited to the particular method

discussed above. A different assumption (as in Kerr's example of the finite

cylinder) is that the exact solution for a similar problem (in Kerr's case the

infinite cylinder) may be used as a guide for the assumed field at the surface of

the scatterer. It would seem reasonable to expect this solution to be a good

approximation as long as it is used advisedly.

Another approximate method has been suggested by Fock (Ref. A-9). It

is limited only by the restrictions that the scatterer be convex and the radii of

curvature be much greater than the wavelength, so that it is applicable to a wide

variety of scatterers and will yield both scattered magnitude and polarization

information.

For those components of a scattering body to which physical optics applies

it may be assumed that the scattering matrix S(HV; HV) has the form

S(HV; Hy) 10 S(HH) (4.1)

From this relation the scattering matrices S(LR; HV), S(HV;LR), and S(LR;LR)

may be determined from equations (1.2.8), (1.2.9), (1.2.10), and (3.2) by putting
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A 2 L, B R, a = 450 and Y 900. The unitary transformation matrices

U(LR; -V) and U(HV;LR) involved here are given by [from equation (3.2) with

Sa=45° " 1=90°]

MR;HV) UHV; LR) -

(4.2)

Hence,

S(LR;HV) = (/2 (4.3a)

S(HV;Lit)s(HH)
-S(HV;LR) = (4.3b)iV"

S(LR; LR) = (0 s)..

It follows from equations (4.3) and (3.6) that, for the nine cross sections

of interest (as given in Sec. 3), the following relations hold where physical optics

reasoning is applied:

or(HH) - o(VV) - o(LR) w (4.4a)

r(HV) = 0, [r(RR) = r(LLj 0 also] * (4.4b)

a-(LH) = or(LV) " .l+EO a- (+V) - r(AP) r- i r(HH)
2

(4.4c)
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5

CROSS-POLARIZATION CROSS SECTIONS OF WEDGES

The trailing edges of wing and tail assemblies of modern aircraft, in

particular the B-47 aircraft, are thin and sharp enough to warrant simulation

by wedge, or tapered wedge, shapes. Since sharp edges will, in general, give

rise to repolarization, such edges are considered in this section.

y

* y

I

00 0Sr

FIG. A-6: WEDGE COORDINATE SYSTEM

5.1 GeneralTheor

Consider an infinite perfectly conducting wedge whose edge lies along the

z-axis and whose intersection with the xy-plane makes an angle 0o with the positive

x-axis.
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I=7

To find the total electric field for arbitrary incidence it is necessary to

solve the equation

2 + 2e) 'E = 0 (5.1.1)

subject to a radiation condition at infinity and to the conditions

V E = 0 in space ( (5.1.2)

x =E = 0 at the body (5.1.3)

where ý is a unit outward normal to the body.

Let the direction of incidence be restricted to the xy-plane with

polarizations (a) perpendicular to, and (b) parallel to the edge of the wedge.

Then equations (5. 1. 1) and (5.1.2) are satisfied if E has the form
9A

or

- -L curl Ai (r,

where

+k) tj (rk •) - 0*. (5.1.4)

The form "E - 1/ik curlsz kb (r, •) suffices for case (a) with equation (5.1.3)

implying the condition

A kb (r. -t 0o), - 0 ( 5.1.5)

Bn

A cylindrical coordinate system. r, 0, z, is used throughout this section.
Unit vectors for these directions are Tr,, iz. The unit vector designating
polarization perpendicular to the edge of wedge is 0(a) Al ,and the unAt
vector designating polarization parallel to the edge of the wedge is D(b) =i

z
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Case (b) requires the form E = 'zz P(r, 0) with equation (5.1.3) implying the

condition
t•(r, +to) = 0 . (5.1.6)

In a recent paper (Ref. A-10) F, Oberhettinger obtained expressions

for the Green's functions for the wave equation for the conditions (5.1.5) and

(5.1.6). Let Q(p, TV + 06) be the intersection with the xy-plane of a line source

parallel to the edge of the wedge and P(r, 0 + 0o) be a point outside the wedge.

Oberhettinger expresses the incident cylindrical wave in the form

Hi o (-kR) =-- 2- Ko(R) = - +PZr cos()2 1/2]

(5.1.7)

where k has been put equal to if3. This equation is expanded in the form

41J i (Sr) K, t (j3p) cosh [(ur. - i ]0-- dt (5.1.8)

0

where K (Z) is the modified Hankel function defined by

-2 (2) I2
K(Z) = -l ie H \Z e
A 2 Pl

"'le total field 0(t) is given as the sum of the incident field (i) and the reflected

field 0 :

The reflected field can be represented in a form similar to equation (5.1.8)

41= f K t. .r)K K. ( ) [AO e + f+tO) e•. ,

0
(5.1.10)
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where, by using equations (5. 1.8) and (5.1.9), f, and f2 are given by

fl()- - -sinh r r"- r -0)I
LI

fQ) e2 K Po _ 2(C) e sinh • r+ 7 o 5.I 14~~f( C ih r~ -00)j (5.1.11)

for condition (5. 1. 5), and by

~fl(C) + f2(g) = cosh[9 Or - y- 00 )]

f1(g)e f+f2(r)e - -cosh (0r+ - o (5.1.1+)

for condition (5.1.6).

To dete-mine radar cross sections, the reflected .elds must be found

for conditions (5.1.5) and (5.1.6). In particular for condition (5.1.6) it iotlows

from equation (5.1. 12) that

Itb 41 K , (1r) NO3p) A(K) dK

where

A(C) 1 { sinh r * cosh C (0-+') + sinh C (200 - Y) cosh C ( -10)}

or

; = i Je Hi ,(kr) H(j (kp) A(J) dr C (5.1.13)

If the point Q(po7 +0o) defined above is moved to infinity. the Hankel

function Ht/i (k p) may be replaced by its asymptotic value
. (I)+

2 4

This is justified in Section 5.2.
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To express equation (5.1.13) in a manner appropriate to the form eikrcos(o-')

for an incoming plane wave, the asymptotic expansion of Hi) (kp) must be

divided by the asymptotic expression

ikp - ii -ikr cos(O-1')
ikp 4

-ikrcos(P-Y)
of equation (5.1.7) and multiplied by e . Thus equation (5.1.13)

becomes for incident polarization (b) parallel to the edge of the wedge,
•(b) 50 r (i
(b) i e 2 (kr) A() d C (5.1.14)

If it is further assumed that the value of r is very large, an asymptotic expansion

can be substituted for the Hankel function in equation (5. 1. 14) giving*

ikr + T71

rkr0

The remaining integral is convergent and may be evaluated for

200> r+l+VI

to give (Ref. A-11, page 55),

Tik+

= " VTo e + IJ sin(5.1.15)

This is justified in Section 5.2.
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S-C

where 2

A -cos +CosW?.Oo 200

and
2

B = cos T(O-Y) -cos '

Using condition (5.1.5) and equation (5.1.11) it can be shown for

incident polarization (a) perpendicular to the edge of the wedge that

(a) ikr+4- 2

(a o • e -1 sin-- (5.1.16)

5.2 Remark on the Use of Asymptotic Expansions of Hankel Functions in the
Integral Representation of the Scattered Field for a Wedge

The purpose of this section is the justification of the replacement of the

Hankel functions by their asymptotic expansions in the integral

fe Hi (k~r) Hit (kp} A(t) dC (5.2.1)

(1)
Since the Hankel function HiC (kr) has the representation

2 2 ikr coa~ht

H (kr) e fe e cost t dt , (5.2.2)

and since the asymptotic form

ikr + jI(1

e e.+ 4 of H ((kr)

has the representation
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Sikr+L-l- + -H1
S4 4

e e H1  (kr)

2ejkrk cs

2 2 e ( r cosh t cosh t dt
, 1i J a

0

(5. Z. 3)

it will suffice to consider the problem of obtaining a bound for the expression

ikr cosh t (5. .4)

e (cosh t/2 - cos C t) dt

0

More generally, if f(t) and g(t) ar? real 1-alued functions such that &(1)/f'(t)

Is of bounded variation and euch thatg(-c)/f'(eo) = 0, then

;iflt) if(O 0 iflt) dr• d

j g(t) dt, - i e, fgO e d-f't)

'0 f'(0) dt

d [ dt * (5.2.5)

- o jd- Lf'() J I

Taking f(t) a kr cosh t and g(t) = cosh 1 /2t - cos t t it falows that the

problem of bounding the expression (5.2.4) becomes the problem of bounding

=d I cosh t/z -cost•t dt ( (5.2.6)
kr Loi sinht J

and this is 4one as follows:
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Gosinh t I sinh-!t+C sin Ct) -cosht coshi~t-cosC(7 2 ) dt

kr 1 -- 
sinh2 t

0 J dt+ cosh-t-CosCt cosh tf- 2+sn~ I•'i~Id dt

0 s-'nh t 0 sinh! t

J~sinh t dt - 0 + Csin C t Idt

f 1h tcosh1t 2 sinh 1 tcosh 1 t
0 Z sinh • o Z

i • ~~cosh_ t- cos Ct cosh tdt f I l+3(5.7

+ si 2  11+3*(5.2.7)
0 s inh

Each cf II1 12 13 may be either bounded or evaluated in finite form:

dt 21; f tr2  odt r2

1 40f cosh t 8 1tos 12

0cosh I t- co tos toh t

S2 cosr'shtdt - + 5-7 tanh_- + Ii.
3 Sin t 4 2 2 4 2

Thi integration is performed as follows: on pages 142 and 163 of

Reference A-11 the integrals

S: f0cosh b

Scos ax-coso b inlog co.h - c >O0

Ssinh cx x cosh aT
ZC

Scosh axo U,, .- >I> I a are given.

179



-,~

Put a u 0 In the first of these formulas and add:
Go cosh In

cosh ax-cos bx dx = log -- 2c

sinh cx x cosh ar

differentiate with respect to c and set a = 1/2, b = 2 , c 1:

Scosh It - cosrt cosh t
&S- A--dt + -V+SA tanhi

0 sinhi t 2 "

Therefore,

e- H() • ikr÷• + 4

e) e 2I w- (3+4 +4C'

(5.2.8)

A similar bound can be given in the case of the rermaining Hankel function of

equation (5.2. 1) for the difference between it and its asymptotic expansion.

Finally, since every term of A(r) is of the form

e VC - e -V > • )A t0 ,Mr -MC
e -e

it can be seen by using equation (5.2.8) a bound which goes to zero as 1/rp for

large r and p may be given for

2t4
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5.3 Electric Fields for Lineair Polarizations

Let the incident field ',o polarized perpendicular to the edge of the wedge.

Then the scattered electric field for the infinite wedge is given by

ikr + t 2i-'s(a) IA (a) 2r
Ef -s writ t { iD J /r e sin7 [ - (5.e3. a)

where A and B are given by equation (5.1.15).

(a(a) a Ir ikr+ -AI

S-is writtenas e 4 f(-) r then

23

+ D r 2ef()I

(a) ik ikr+ -! -) ikr+)U
D f() e 4 2r7----r 2 e

t Zt e f e iJr
Lk

e o wee h ikr+! l
+D4~ 2'O e

can be approximated, for very large r, by

~~(a A (a)

in equation (5..3. 1a).

If the incident field is polarized parallel to the edge of the wedge, the

scattered electric field for the infl.nite wedge is given by

5.4 Electric Fields for Arbitrary Polarizations

If the incident field, with. dDeection of incidence in a plane normal to the

edge of the wedge. has an arbitrary polarizationi; i.e.,* if
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A .E =E(a) (-iýsin ^e+1jcoa 'Y) + E(b) Aiz E(a) i+ E(h) '?z (5.4. 1la)

the scattered field is a linear combination of equations (5.3. la) and (5.3. lb):

s 1 ikr + T-si 2 E(a)'o - E(b)z E(a)"-E(briz1

40 0 A BJ
(5.4. 1b)

It was shown in Section A. 2.8 of Reference A-1 that to go from the field

for an infinite wedge to the field for the class of finite wedges whose current

distributions are the same near the vertex involves only the multiplicative factor
L -izr/4

L e where L is the length of the finite wedge. Thus, if the incident

electric field is of the form (5.4. la), equation (5.4. lb) becomes for a wedge of

length L:

_L eFikr 12 E (a)t0- E(b)tz E(az +E(b~i'z

Ee sin AB (5.4.2Z)
S= 4roo .~

5.5 Cross Sections for Linear Polarizations

The effective cross sections a for the finite wedge can now be given for

the cases where the transmitted and received radiations are of arbitrary polariza-

tion and the direction of incidence still in a plane perpendicular to the edge of the

wedge. The definition of effective cross section is, as given before by equation t

( 1.26)

a- = lim 4yr2  
1i (5.5.1)

where p is a unit vector denoting the receiver polarization.

it



For example, if E(b)E z andp = p(b) ?z ,then

L kr 2 [- L ~4
i Le 1 I 1E(b)1Z (5.5.2)

40 r B00 .

and

cr (bb) - snL2  
Wi 1+ (5.5.3)

'20

? where o-(bb) indicates that both the transmitted and received polarizations are

t in a direction parallel to the edge of the wedge.

If EE(b)z and p =p(a) = -,xsin'?+iycosYv then E is as in equation

(5.5. 2) and
Tr(ab) = 0 , (5.5.4)

w'here r(ab) means that the transmitted and received polarizations are respec-

tively parallel and perpendicular to the edge of the wedge. When the transmitted

and received polarizations are both in a direction perpendicular to the edge of

the wedge; i.e., when E(a)( ,Xsinn+?ycosY) and ; •(a) =4,X sin,+ty Cos7

then
ikr

- sin L'2 E(a) (5.5.5)40.r A0o A B

and

r(aa) -- sin! I---- cos•(-)1 (5.5.6)

5.6 Cross Sections for Circular Polarizations

For circularly polarized transmitted and received polarizations it

suffices to find w(Rb), r(Ra). and r(RR), where R indicates right circular

183



1

polarization. For incident radiation, unit vectors indicating right and left

circular polarization are respectively,

A I FA Al

t(L) A 1 sin/+fy cos1) - i (5.6.lb)

VL

For scattered radiation, the unit vector system is interchanged; i.e.,

AS 6s
i (R) (L) and (L) = (R).

.4 A AS
IfE =E(R)?(R) and p (R)= (R), then

E(R) .Le ir IL1 itz 1 + (5.6.2)Y" 400or sin 0 A BA

and

r (RR) sin cos( - + 7i j2 (5.6.3)

A)k E isas inu ~p Ebkadp (R) [-txsinl+iycosIi)- J the

equation (5.5.2) and

a- w L sin 2_._ + = I cr(bb) (5.6.4)

8002o 20,0 LA B] 2

Finally, if E1 is given by E = E(a)(-Tx sinI+iy Cosy) and / by •(R) =

I V2- [(-T sin1+ cosT)-i then E is given by equation (5.5.5) and

2 2
2 2 r

a-(Ra) sin COB2 ( ) = -(aa) . (5.6.5)
82 [00 A B
0 1
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5.7 Summary of Formulas

For backscattering, 7 V (direction of incidence still perpendicular

F to the edge of the wedge) the effective cross sections obtained in Sections 5.5

and 5.6 become:

1. aI(b 2 21 bL sin 2  °

2. o'(ab) = 0

3 . a (a a ) 

_M_5 
.

S 2 C = cos" +cos 2 (5.7.1)

4. M
4. a(RR) = 4C 2

5. 1(b) = Ir(bb) D = 1-cos r
2 

0

6. cr(Ra) = -"1 r(aa)

C and D are respectively the values of A and B of equation (5.1, 15) for • =7.

5.8 Coordinate Systems

To apply the formulas of Section 5.7 to wedge-shaped components of

an airplane, the relations between the polar angles of the wedge and of the

airplane coordinate systems must be known. These relations are derived in

this section.

Let,* ^* AI
l I Let be a unit orthogonal set describing the airplane

* *, y *, - axes, with and ,* as polar angles in this system,. Let ..

be a unit orthogonal set describing the wedge axes. with 9 and 0 as polar angles
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in this system; and suppose that the edge of the wedge lies along the z-axis

and that the wedge is symmetric with regard to the xz-plane.

For a fixed aspect 0* it is desired to find the azimuth, • ° for which

the direction of incidence, 0 =111, is perpendicular to the edge of the wedge.

Let
A - All a 13

AA A A

a a2 a 23i

A AA
4?iz*=a ix +a 1+-a 1

31 32 ay 33 Z

8**

*

X Y

/ _

FIG. A-?: FIG. A-8:
WEDGE COORDINATE SYSTEM AIRCRAFT COORDINATE SYSTEM

188



Let the unit vector izin the direction of the edge of tho u,"dge be given by

A A*
i = sinacos0i*+ sin•a +cosin 0,I -aCos*a i*

= (a -3 ) +a I +a t* (5.8.2)

A
e If the direction v of incidence is expressed by

perpendicular to the edge of the wedge A v = 0) is

Cos (0 1 - 9) = - Coto* cot a ,(5.8.4)

where a-- arccos a.3 an 3 =acna 2 f a1 3

The angle 0 =7' for which incidence is perpendicular to the edge of the

wedge is given by

tanln* cos1, +a 2 z sn9* si=• + a32 cos8* (5.8.5)

al 1 sinO* coso* +a 2 l sine* sine. +a 3 1 cos6*

For incidence slightly out of the normal plane, say by an amount 6 U,

the cross section will drop off approximately U)2 (Cf. Ref. A-i,

p. 129), that is
or non-normal g (5.8.6)

€normal WL ( u)

Thus it is possible to find a u for which na drops off by a given amountnormal

it isfrom equation (5.8.6),

au (5.8.7)

2 i

The amcunts used for the comlutations later are g a l/Z, 1/10, 1/100.
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It is now necessary to find the change in azimuth angle 6 * for which

Srnormal drops off by the fraction g2; that is, find 5 •* in terms of bu.

From

sin 6u = a sine* cos(0.L + 60*) + a sine* sin(P + 60*) + a cosO*
13 2 33

(5 8.8)
it follows that

bu t-- a13 sine* cos' - 60*2) -a3 sine* sin6 6*
13 130~ (PT02'

+ a sinO* -in 2) + a2 3 sine * cosp +* a 33 cos9*

a cosO* 0* + 3 sine in +a sine* cosJa3 2 -13 P +23 2

"u- o * 6* asin*-a3 + (5.8.9)L 33 2

- Solving equation (5.8.9) for 6b* yields

r 6[* ~ - sinae* 33 + /sin2 eo -a '2a 3 3 oos8* (6u)(8a 33, -o (5.8.10)
a3 3 cose*

andif in2 * -a 3» 2 3 3 cosO* (6u), equation (5.8.10) gives

Sj•* =2 (5.8.11)
0sr* - a 33
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5.9 Wedge S-Matrices in the Airplane Coordinate System

k tLet the designation of axes be as given in Section 5.8 and the direction

of incidence of energy on the airplane be as given by equation (5.8.3). Horizontal

[ polarization is taken to be polarization parallel to the ground; i. e., in the x*y* -

plane of the airplane coordinate system:

P(H) = jcsin* +it*o~ (5.9.1)

Vertical polarization is perpendicular to horizontal polarization; hence

p(V) = VA x NH) = -co.0* cosp* 'x* -cose* sin* iy* + sine* i . (5.9.2)

The polarization directions p(a) and p•b) of Section 5.5 may be written

in the airplane system as

p(b) = sina cos+ i + sina sin Vy+ cos a a13  a2 3

I ' * ~+ a33 13'X
(5.9.3)

A Aiia) = x N(b) = (sinO* sino* cosa - cosO* sina sing) ,

+ (cos9* sina cos3 -sine* coso* cosa) Iy*
y

+ (sine* cosO* sina sinai- sine* sino* sino cos ) z* (5.9.4)

(u(Ha) u(Hb)
The matrix U (Va) u(Vb)}

can now be given explicitly as

" U -sin&* cosa+cosO* sina cos(O* -•) -sin& sin(* - (5.9.5)

where n sin(O* - 0) sine * cosa - cos* sina cos(O* - •)

where the elements u(LT) of the matrix are determined from the previously

given relation u(IJ) = p(I)" p*(J). Since the direction of incidence Is to be
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A. A
perpendicular to the edge of the wedge; i.e., V is perpendicular to p(b), the

Sii angle ' for which such perpendicularity occurs (for fixed 0*, a, 13) is given

by equation (5.8.4)

cos(.* -3) C -coto* cota . (5.8.4)

For each such angle •*, U reduces to

- Cosa csc* - sina sin(O* -

cs 9 (5. 9. 6), - sin asn(0 -) Cosa 0, /

From equation (5.4.2) the S-matrix S(ab; ab) can be read off as

S(ab; ab)- L e sin _ 0C D

4ro0  200+ (5.9.7)

Using equation (5.9.7) In conjunction with equations (5.9.5) and (1.Z. 10),

the matrix S(HV; HV) = U S(ab; ab) U in the airplane coordinate system for any

wedge component of the airplane is

Zcos~a 2 ( + I) sina cosa sln(0*-0)

2(M eikr Csin2O* C D CsinO*• ~ ~~s(Hv; HV)= -- --
r

Pina cosa sin(O*-3 2

~ ~ (*-~~-2cosCsinO " k• 5)Csin 2 O*

(5.9.8)

where M, C, D are given by equation (5.7. 1).
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6

CROSS-POLARIZATION CROSS SECTIONS OF WIRE LOOPS

In addition to those sharp edges on an aircraft which must be represented

by wedges there are, particularly for jet aircraft, sharp edges of a circular or

loop shape. Such circular sharp edges are represented by wire loops which are

discussed in this section.

6.1 General Theo

As pointed out i. Section A.Z. 10 of Reference A-A, the scattered field

from a small straight piece of thin wire is similar to the field of a dipole. It

is of the form
S•sE K •× • eik dca (6.1.1)

* r

Awhere d.l is the length of the wire, r is the unit vector to the field point, r is

A
the distance to the field point, and d is a unit vector along the wire. K is a

proportionality factor given by,

AlA

K = K, d)..

where p is a unit vector giving the direction of polarization of the incident

electric field and X1 is a constant to be determined.

From the definition of cross section given by equation (1.2.6) the cross

* ,section of a small straight piece of thin wire is

a- 4irr 2.lA01?. r (cit)2 *(6.1.3)
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where superscripts i and r denote transmitter and receiver polarizations

A A Arespectively. If p (for both i and r) is parallel to the wire, (p" d) = 1; for

this case (o , = r 0) equatio.i (5.5.3) gives for the cross section

---- ? (6.1.4)
I

where, in equation (5.5.3), L has been replaced by dl. Comparison of

Aequations (6.1.3) and (6.1.4) for this case (i.e., p parallel to wire) yields:

J 2w

Hence the field equation (6.1.1) may be written as

E it - d) . e d . (6. 1. 5)*
SdA 21 r

To find the scattered field for a wire loop, an integration is made over the loop:

I' A A Z~~ik21r
(pdj f (0'-d) r -- e dY,

2r loop r

AThe effective cross section of a wire loop is then, since • • r • 0,

2 1- Ar I f 2
a = 4rr 1 j2i)(r.) e2 il~ dt.

E " loop
(6.1.6)

where p is the distance measured in the direction of incidence.

To take into account the phase lag in making the round trip from radcr to wire
and back, equation (6. 1. 1) has been multiplied by eikr to obtain equation (6.1.5).
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Consider a loop of radius a in the xy-plane with center at the origin

Figure A-9. On the wire x = a coso, y = a sino; thus dl = ado; and the direction

of the dipole is d = -•sino +Tycoso. Let the direction of incidence be in the

A A A A Axz-plane and be given by v = J,~in6 -IzcosO; this makes p = (x1x+yQ-. v a sinOcoso.

Let two perpendicular directions of polarization be given by:

DA=I'oz i Acos , si nsin ^ (6.1.7)

A 'A----= icsecosT- sin'+izsin6 cost, (6.1.8)

zz

z

IX y

V V

a - radius of loop a - -sin y of•

A A AS !d = direction of dipole V= -- Vn Tc8

VA - direction of propagation It = a (•oso +Iysinf)

of incident plane wave

FIG. A--@: COORDINATE SYSTEMS FOR A WIRE LOOP
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whert.' is the angle bctvmcn the polarization vector and the v-axis. Right- and

left-circular polarizatioin dirt ,tiomns can then be given respectively by:

A i

S•([ i I-- 4-ix~icos9)÷y (sinG) 0 (61:.9)

p(L) e (i cos8)+6y -Iz(isin0) (...10)

b.2 Cross Section Formulas

ForrnuIns for the following effective cross sections have been determinea:

o-(AA), cr(BB), r(AB), or(A1P. cr(BR), and a (RR); in r(LJ), I and J denote receiver

and transmitter polarization respectively, For example, using equations (6. 1.6)

and (6.1.7), or(AA) is given by:

;-(AA)- - ] f (CooS CosY - S sin cos6) 2 eZika sine .. d 2

ira cn 0 COS os7) J (Zka sine)

2 2
+(sin 0'cos 6 - cosV ) J)?(Zka sinbi (6.2,1)

where Jn is the Bessel function of order n.

In a similar fashion the remaining formulas are found to be

o.(csS cO s - sin'7 J- (Zka sine)

+ (cOs1 O cosll + sinii ) J 0 (2ka Si)

or(AB) ira2 sin y co"o y(l cos01)J(Z (ka sin) - sin28 J0 (ka uir.)j (6.2.3)
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cr (A R) ra2 (i Cs2 0sn o )J(k iO
--- ( cos 0 sint - cosY ) J2(2ka sine)

22
22

+ (i cos26 sin+ cos T ) J (2ka sine) 2 (6.2,4)

0D
or(BR) - r•( o o? i, ie

2 2 ( i 2

! ~~~~+ (i cos2 O cos V' - sin')) Jo12ka sine)j 6,,5

cr(RR) -a (-o 2  1) J,2 2ka sine) +i-(-cos2e + 1) J0 (2ka sino~j (6.2.6)
.I
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7

DIHEDRAL SCATTERING

7.1 Wing-Body Dihedral Scattering in the Dihedral Coordinate System

Let the surfaces representng the wing and body be such that for each

surface one of the two principal radii of curvature is infinite and the other is

t neither infinite nor zero. The scattered field is computed in this section for

the dihedral formed by the wing and body by Fock's formulation of geometric

optics (Ref. A-17).

Consider the conditions on a ray which is reflected back to the point

A
whence it came: Let k be the initial direction of the ray and let nw and nb be the

V, normals of the wing and body, respectively, at the points where the ray hits

[ Ithem. Suppose the ray hits the wing first. After hitting the wing the ray is

traveling in a direction

•,.~ ~ - n nw ;1..I

after hitting the body the ray will be traveling in a direction

AA A A
n- 2w) nk - 2(k. ) n n -k . (7.1.2)wb b

The equality is required in order that the ray be reflected back to the source.

Since equation (7. 1. 2) may be rewritten as:

w ~ ~ (n * )n wnw h (7.1.3)

A A

it is apparent that k is a linear combination of nw and ab' and thus lies in the

plane of these two vectors. Further, the scalar product of equation (7, 1.3) with

9w and nb respectively yields:
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= 0

(knw (w nb) =0(7.1.4)

Thus, nb = 0. The same conclusions would have been reached if the ray

had hit the body first.

The above results allow a coordinate system to be chosen such that

A A A An!w =iz and nb = i(Fig. A-10). The ray is reflected from the xy-plane at

x = R'sine, and from the yz-plane at z = R'cosO, where R'is the distance

between the two points from which the ray is reflected.

Since the geometric optics field depends only on local properties of the

scatterer, the wing and body surfaces may be replaced by parabolic cylinders

having the same radii of curvature. These are, for the wing and body, respectively,

Z (y Cos - x sinp + R'sinS sinS)2

x (z cosa - y cosa -1Icoso cosa)' (7.1.5)
. ZRb

where R. and Rb are the radii of curvature of the wing and the body.

Fock's formulation of geometric optics will be used. Since the pertinent

formuias are given in Section 3.1 of Reference A-17, the detail involved to

obtain reflected fields will be omitted.

Consider the case shown in Figure A-10 where the ray hits the wing

before it hits the body. (The reverse case can then be obtained from the

symmetries of the problem.) If the incident electric field is taken to be
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z

r A
b

•y

Incidence in xz-Plane

/A A A
w r =fi direction to radar - sine1 + cosO

b = direction of body axis

=Cosa I y + sinai
= direction of wing axis
= cospTx+ sie •y

y
-- measured in xz-plane

a - measured in yz-plane
= measured in xy-plane

FIG. A-10: COORDINATE SYSTEM FOR WING-BODY DIHEDRAL
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A__ _ _ _ -ik~ -in -z * os

I Cosy (-IAose + sinO) sin ] e , (7.1.6)
i '§os+~XC z Y1

the field reflected from the wing at the reflection point on the body is

(following the procedure of the above-mentioned reference),

AR '1k i cos2 9
E=(sinvr cos0 ij- cosy iY,+ sin-f sinOl~ ed V*+- 'I-i 9 (7.1.7)

Rw cos9

After reflection from the body the scattered field for large Ro is

A A A2
- f J~bsjn61O (sin')'s~ CO X 1csYy-sinsinB1z) _o0 9+cs) ik(R'cos0+R )l

2 R0 I cosa cosP cosO - sina sing si.m

where R is the distance from the reflector to the radar. Thus the scatteredIo

field of wing-to-body plus body-to-wing is

sAn Aos _sn sin't si A )eik(R'cos 2 +RoJ
- RwRb sinecos (sin coSOx+COs~iy sinOz)efE

B R. cosa cosi3 cose - sina sinj3 sinej
(7.1.1l)

If tne polarization basis vectors are taken to be

ý(A) - y

NB) = -cos0x+ sinO iz (7.1.9)

then the scattering matrix S(AB; AB) is given by:

1 0)
S(AB;AB) 1(7.1.10)

i where



fRWRb sine cos9

rcosa cos- cosO - sina sine sinol

and p is a phase factor which is unimportant for the calculation of cross sections.

The form of equation (7. 1. 10) indicates that the incident wave has been re-

polarized (Sec. 4) by the wing-body dihedral.

7.2 Transformation to the Aircraft Coordinate System
A A

In Figure A-10 let r be the direction to the radar, b be the direction of

the body axis, and w be the direction of the wing axis. The direction of incidence

is taken to be in the xz-plane so that 0 is measured in the xz-plane; a and • are

measured in the yz- and xy-planes, respectively.

Put
A A AI

b = cosa iy+ silu iz
r sineix,+ cosO 1z (7.2.1)

As before, asterisks are used to denote the aircraft coordinate system.

A A
The tie-up between the two coordinate systems is made through r. b,

and W which can be expressed in both coordinate systems. In the aircraft

A A
coordinate system b and w are constant vectors for a given aircraft while

r = sinO* coso* x* +sinO* sino* *+cose*z* ( (7.2.2)

The expressions of equation (7.2. 1) for w. •. and r can be inverted to give
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_ Cosa cose -1- -- qin cosO b + si- sin r

y A A

A A AI ¢ = sinct sinO w + COO• cosO b - sirct cos r_ _

A -sinO cosa w+sin3 sinO b + cosa cosp
b 'x r (7.2.3)

where cosa cosg cosO + sina sinf sinO has been replaced by w*1, x r. If the

excet tat a°•, and 0 are unknown. These angles can be determined from
A A

b- r i sitaecos6 -- t ,A A

r • w = sinOcoso = u ; (7.2.4)

they are

S2 t 2 + D
1- U 2

Cos, ?P - u= - s + D

cos~~q• -- tF u +

co 2° 2 U22+ _ (7.2.5)

2h r D2 (I s2 2 uE
where D . . ..t 5 (2 eta) . The sign of D must be chosen so as

to obtain the correct physical setup of the wing-body combination. a. P. and8

are used not only in the expressions for x.yad •, but also in the expression

for Q.

zo01



The transformation from the scattering matrix for the AB basis to that

i for the HV basis ib accomplished by

S(HV; HV) U(HV; AB) S(AB; AB) U'(HV; AB) , (7.2.6)

where

(P(H) p(A) 0(H) '(B)
U(HV; AB) (7.2.7)

^(V) p(A) p(V) P(B)

since D(A) and 0(B) are real. Here,

A A Ap(H) = - sino•*Ai * +cosO* Vy

A A A
p(V) = - cos0* cos*'x* -cosO* sinO* ,* +sinO* tz* (7.2.8)

The only unknowns remaining in the determination of S(HV; HV) are

Rw and Rb. From Figure A-10 the normals to the wing and body at the

reflection point are:

w
A =A

A A A
which are known in terms of ix*, y*, and I *. From the direction of the normal

at the reflection point the radius of curvature can be determined from the formula

radius of curvature = 3 (7.2.9)
[(at + (b " 7)2]"

where a and b are the semi-major and semi-minor ellipse axes and and A

are unit vectors along these axes, respectively.

p
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8

CROSS-POLARIZATION CROSS SECTIONS FOR CYLINDERS

In this section the limitations on the use of the physical optics current

distribution method are considered. That such limitations exist is evident from

the fact that there is no repolarization of incident radiation in monostatic single

reflection situations according to physical optics. However, this is not an es-

sential limitation in computing the cross sections for various aircraft

components.

For example, consider the scattering from the wing-fuselage combination

illuetrated in Figure A-11.

Direction of Incidence

FIG. A-Il: WING-BODY DIHEDRAL
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"For broadside aspects the wing-fuselage combination was treated as a

dihedral which gives rise to double scattering (Sec. 7). Moreover, the single-

scattering contributions, principally from the fuselage, have been included.

In the case of circularly polarized radiation, an analysis in terms of

the characteristic dimensions of the wing and fuselage for the aspects con-

sidered indicates that for double scattering the dominant components will be

o(RR) and o-(LL), while for single scattering the dominant components are

ar(RL) and o-(LR). That is, the characteristic dimensions are such as to insure

the validity of the physical optics approximation. It is then possible to set up

the following rule of thumb for the application of the physicdl optics approxima-

tion in determining the scattering properties of a target for cvreularly polarized

radiation:

1. The double-scattering contribution to cr(RR) must be much
greater than that of single scattering to o(RR); i.e., the
repolarization effect of the single scattering ie small with
respect to the double scattering.

2. The single -scattering contribution to a-(RL) must be much
greater than that of double scattering to ar(RL).

On the other hand, viewing, for example, the leading edge of the wing

there may be a measurable contribution to o-(RR) arising principally from a

single-scattering repolarization effect. Although in this case the physical optics

approximation may give a sufficiently accurate measure of r(HH) and ar(VV), it

can give no indication of the contribution to ar(RR). To take into account such

cases the polarization-dependent current-distribution method of V.A. Fock
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(Ref. A-9) is intr'v-.ced. It is, in effect, a modification of the physical optics

method and can best be, illustrated by a comlarison with physical optics.

In the physical optics approximation, the tangential component of the

magnetic field on the surface is taken to be twice the tangential component of

the incident field on the illuminated side and zero on the shadow side of the

scatterers. Thus, the tangentiai component of the incident magnetic field can

be written:

H = H 0G(1) *(8.1)
t t

where G(J) is a function of a certain reduced distance from the shadow boundary;

F' • is positive on the shadow side, negative on the illuminated side of the scatterer.

Hence, for the physical optics approximation

G() = 2 for < 0,

- 0 for >0. (8.>)

By considering the local fields on the shadow boundary, Fock had

obtained a continuous function G(A) such that

G(%) - 0 0

GQ) 2 .(8.3)

Fock's value for the field on the surfrce becomes the first approximation of the

method of Franz. and Depperman (Refs. A-12 and A-13) applied to the circular

cylinder or sphere.

The details of Fock's method applied to the particular surface chosen

to approximate the wing surface are given below.
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Consider a finite cylinder whose cross section is made up of one-half

an ellipse and one-half an ogive. Let the major and minor semi-axes of the

ellipse be designated by a and b respectively. Let the ogive have radius of

Scurvature R = a2 /b, and a semi-minor axis b.

Attach the half ogive at the point of maximum radius of curvature of

the ellipse; i.e., at the minor axis. The cross-section is then a smooth curve

having an elliptic 'nose" and an ogival "tail". Let the length of the cylinder be L.

Under the assumption that plane radiation is incident at or near "nose-on";
A

i.e., the direction of propagation k is in the XY-plane making a small angle a

with the negative X-axis, the cross section is computed using a current distribu-

tion method as follows:

After Fock (Ref. A-9) it is assumed that the characteristic dimensions

of the cylinder are sufficiently large with respect to the wavelength of the incident

radiation that the current on the surface is given by the geometrical optics cur-

rent modified by a shape factor which is a universal function of a certain reduced

distance from the shadow boundary. It is further assuimed that the cylinder is

of sufficient length L that edge effects may be neglected and that the same current

distribution can be used along the entire length of the cylinder.

In general the magnetic field scattered from a finite perfectly conducting

closed surface is given by the expression (Ref. A-1),

ikR
(R1Kf8T eV dS (8.4)

40 J8  R
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where S is the surface of the cylinder, i is the unit outward normal vector to

S, R is the distarce from the integration element on S to the field point, and Ht

is the tangential component of the total magnetic field on the surface. In

particulars for the backscattered far field,

- ik A e ikR
s 4- r 's k x (n xfAt) e dS (8.5)

1 where r is the distance frcm the field point to the center of the scatterer and

A
k is a unit vector in the direction of propagation of the incident plane wave.

For the scatterer under consideration put the origin of coordinates on

the upper shadow boundary midway between the ends of the cylinder. Let the

X-axis be in the direction of the incoming radiation, the Z-axis perpendicular

to the cylinder surface and the Y-axis in the direction of the cylinder axis

(Fig. A-12).

First consider the case of incidence along the X-axis and the electric

vector polarized perpendicular to the cylinder axis (Fig. A-13).,

In this case

Ht- (0, HtV 0); (8.6)

hence,

Sn Ht) = (0.n n Ht, 0), and (8.7)

SikR e ikr ik i r' (8.8)

where,
-'A

km k k (8.9)
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so that

k ikr -" r'
rk e n ~ dSH - nx Ht e dS.(8.10)47r r s

After Fock (Ref. A-9), write

HG )•(8.11)
Ht = HtGQ

0 i. AI
where Ht = e . The function G(U) is determined numerically and tabulated

for • -4.5 (0.1) 4.5 by Fock (Ref. A-9).

The integration over the y direction o, the integral gives simply

H iL eikr f i•.•

H = AL er nx e G(T) dA * (8.12)
s 4 r f

where dZ is the element of path around the cross section of the cylinder. To

facilitate the computation divide the integral into two parts. that over the ellipse,

and that over the ogive. Let these parts be designated by Ie and 10 for the

integration over the ellipse and ogive respectively. Because of t*he symmetry

of the nose-on case, only the integral over 1/2 the cross section, from nose to

tail need be calculated. Thus,
S~Zikr

AsiL e (2 1 +2Io) (8.13)

I

where

nx e G(Q) d.9 (8.14)
o, o e

0
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i Now

... n dAg = bI x on ,t. , and (8.15)

k, • 2 1/3 2L

= xa (8 . 16 )

t ~hence ,

iI4 -a • 1•

n on and(8.15)

ie f d

x1/3 x

a (1. 18b

a a(8.16)

0 2)~

while n dL -zos8 dO on Land is given above; hencexb 0

2kL 1/ (4a /

a 21 / fI. ( 2L/ ________

(::. (.10

W k)1 (8.18)

The cross section is then given by:

Lk I'e + J01
(k21

(8.19)
_k

2 L2  le+l2
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For incidence at some angle a to the X-axis, the same current distribution

technique is applicable provided:

1. The radius of curvature, R., at the shadow boundary
remains sufficiently large,

2. The minimum distance from the shadow boundary to the
"tail" is large enough for the shape factors to assume the
asymptotic value, zero.

It is required that the radius of curvature at A be much larger than a

wavelength and that the reduced distance froin the shadow curve at B to the tail

C be so great as to be in the asymptotic range of the function G(9).

y1

A~ X1II

II
z /

FIG. A-14: COORDINATE AXES FOR INCIDENCE AT ANGLES a
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As before erect the coordinate axis with the shadow boundary as the

crigin. Since there is no longer the symmetry of the 'nose-on" case, it is

neceosary to divide the surface into two parts and determine the contributions

from the two sides of the specular reflection point separately. With this in

mind two coordinate systems as indicated are used and the procedure is the

same as before.

In the case of parallel polarization, after Fock (Ref. A-9), make the

approximation that on the surface

H = 0, (8.20)

0 ikxH = H e FM• (.1
x m z

where -
(/ N

( _

2C
1 Y 3 i2t

F(9) 1--I e-- 3 e dt
1C w(t) C

27r

wlte- 1-3 3
w(t) = --- dz .

c .(8.22)
C

Asymptotically for large negative • o F(t) is evaluated by the method of

stationary phase; thus,
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which gives the geometrical optic field

ikx o xb _ ikx
H x =2i e HZ - Zi Hz e R (8.24)

For positive • * the function F(9) may be evaluated by closing the contour C

and obtaining the sum of residues,

F(t) = 27ri2 e (8.25)
w'(t s

where the ts are the zeros of w(t).

The zeros of w(t) are given by Fock (Ref. A-9) and by Franz (Ref. A-13).

The values of w'(ts) are given by Franz in the form of those of a related function.

The function F(C) must be evaluated by quadratures for C < 0 and as is in-

dicated above, may be evaluated by the method of stationary phase for : -1.

The function F(9) has been computed and appears in Tables A-i and A-2.

By an analysis analogous to the above the scattered magnetic field is

found to be in the Z direction, and is given by

• _ik e ikr i kl r-P

-Hs. J n H e dS. (8.26)a 47 r z x

Subs'Auting for Hx*

ikr eikx
H• =(L--L- e e n F(k) dS o (8.27)

fS

where n 1 nxand n is given above.
z x
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TABLE A-1: VALUES OF F(g), 0(0.1) 2.1

Re [F(f)l Im [F(UVj

Numerical Integration Residues Numerical Integra'ion Residues

0 0.38791 -0.67188

.1 0.38569 -0.56098

S.2 0.37880 0.45779

.3 0.36699 -0.36257

.4 0.35013 0.34876 -0.27557 -0.27526

.5 0.32825 0.32747 -0.19712 -0.19747

.6 0.30153 0.30120 -0.12754 -0.12793

•.7 0.27040 0.27027 -0.06721 -0.06291

.8 0.23547 0.23550 -0.01648 -0.01665

.9 0.19762 0.19768 +0.02432 40.02432

1.0 0.15799 0.15777 0.05496 0.05480

1.1 0.11797 0.11793 0.07539 0.07526

1.2 0.07918 0.07920 0.08582 0.08575

1.3 0.04341 0.04343 0.08683 0.08681

1.4 0.01247 0.01249 0.07951 0.07950

1.5 -0.01193 0.06546

1.6 -0.02852 0.04689

1.7 -0.03660 0.02651

1.8 -0.03644 0.00722

1.9 -0.02937 -0.00815

2.0 -0.01785 -0.01748

2.1 -0.00512 -0.01986

2.2

2.3

2.4

2.6

2.7

= 1214



r TABLE A-2: VALUES OF F(f), -2. 7(0. 1) 0

Re [F(UJ) Im [F(t)]

Numerical Integration Asy- 3totic Numerical Integration Asymptotic

0 0.38791 -0.67188

- .1 0.38582 -0.79024

- .2 0.37987 -0.91585

- .3 0.37052 -1.04845

- .4 0.35838 -1.18775

- .5 0.34392 -1.33347

- .6 0.32771 -1.48526

- .7 0.31027 -l.o4276

% - .8 0.29209 -1.80557

- .9 0. 27355 -1.97328

-1.0 0.25509 0.15972 -2.14544 -2.13348

-1. 1 0.23697 0.i6300 -2.32164 -2.30150

1.2 O.21948 0.15162 -2.350144 -2.47517

-1. 3 0.20285 0. 13924 -2.68455 -2.65543

-1.4 0.18718 0.12599 -2.87050 -2.84129

-1.5 0.11340 -3.03128

-1.6 0.10205 -3.22414

-1.7 0. 09207 -3.41898

-1.8 0.08336 -3.61514

-1.9 0.07576 -3.81216

-2.0 0.06912 -4.00998

-2.1 0.06328 -4.20819

-2.2 0.05810 -4.40675

-2.3 0.05352 -4.60557

-2.4 0.04942 -4.80461

-z.5 0.04575 -5.00388

-2.6 0.04245 -5.20322

-2.7 0.03947 -5.40270
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APPENDIX B

FAR FIELD SCATTERING FROM BODIES OF REVOLUTION

1

SUMMARY

By use of approximations based on physical reasoning, radar cross section

results for bodies of revolution are found. In the Rayleigh region (wavelength large in re-

spect to the object's dimensions) approximate solutions are found. Examples given

include a finite cone, a lens, elliptic ogive, a spindle and a finite cylinder. In the

physical optics region (wavelength very small in respect to all radii of curvature)

Kirchhoff theory and also geometric optics can be used. When the body dimensions

are only moderately large in respect to the wavelength then Fock or Franz theory

can be applied and examples of the circular and elliptic cylinder are presented. In

the region where some dimensions of the body are large in respect to the wavelength

and other dimensions are small in respect to the wavelength, special techniqueE are

used. One example, the finite cone, is solved by appropriate use of the wedge--like

fields locally at the base. Another example is the use of traveling wave theory for

obtaining approximate solutions for the prolate spheroid and the ogive. Other results

are obtained for cones the base perimeter of which is of the order of a wavelength by

using known results for rings of the same perimeter.

* Applied Sei. Res., Sect. B., Vol. 7, 293-328 (1958). (Errata have been corrected

and slight revisions have been made.)
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INTRODUCTION

It is the intent in this appendix to use different mathematical techniques

to obtain approximate results for the far zone scattering of plane electromagnetic

waves by perfectly conducting bodies of revolution for all ratios of body dimension

to wavelength. In places speculation based on physical reasoning has replaced

mathematical rigor. We shall first discuss the Rayleigh region, then the physical

optics region, and then the resonance region.

,1

I I

I
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3

RAYLEIGH CROSS SECTION OF BODIES OF REVOLUTION

Rayleigh scattering (Ref. B-i) describes the scattering of electromagnetic

radiation by a body whose dimensions are much smaller than the wavelength of the

radiatioi.. Thus the Rayleigh limit describes the scattered field, due to an incident

plane wave, approximated at a large distance from the body by the field of radiating

electric and magnetic dipoles located at the scatterer (the magnetic dipole contri-

bution is comparable to that of the electric dipole only for a perfect conductor).

To evaluate the electric (magnetic) dipole moment, the static electric (magnetic)

field induced on the body by an applied constant iield muqt be known. In other words,

the electrodynamic boundary-value problem has been reduced to a corresponding

static problem.

Although the solution of the Laplace equation is in principle simpler than

the solution of the Maxwell equations, there are very few geometrical cases for

which even the former is manageable. The question, therefore, arises whether

any approximate information can be obtained as to the Rayleigh cross section when

a solution of the Laplace equation is not available. That this should be possible is

heuristically plausible. When the wavelength is much longer than the dimensions

of a bony, one cannot discern details of the structure of the body - the observed

effect depends more on the size of the body than on its shape. Thus, knowledge of

the size of the body modified by a rough indication of shape, should suffice for a

description of the body in finding thp Rayleigh cross section. It is the purpose of

the present discussion to explore this possibility.
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As background, it might be helpful to bear in mind a couple of features of

the Rayleigh approximation itself. The solution to an electromagnetic scattering

problem can be expressed as a multipole expansion. The relative importance of

terms in the expansion differs according to the distance of the observer from the

scatterer (as well as on the dimensions of the body relative to the wavelength), so

that a small error in describing the field in one region can result in completely

misrepresenting the corresponding field elsewhere. For a scatterer much smaller

than the wavelength, retaining only the dipole terms gives a good approximation

to the far zone, though the field in the near zone may be entirely wrong. Specifying

the dipole moments of the body does not determine the body uniquely (I. e. different

bodies may have the same dipole moments). Thus the Rayleigh cross section alone

cannot identify the body fully. On the other hand, the finer details of the structure

of the body, which would be exhibited by the higher momeits (and aeriously affect

the cross section at small wavelengths), do not affect the Rayleigh cross section.

For simplicity, consider the scatterer to be a body of revolution, make it

a perfect conductor (this is a rather trivial limitation), and examine backscattering

of a plane wave incident along the axis of symmeLry. 1tere is then no polarization

dependence. Thus, the direction of incidence will be denoted by z, the incident

electric vector direction by x, the incident magnetic vector direction by y, and the

length of the body along the symmetry axis by C. The electric dipole moment

is given by
N4 r (3.1)

S
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where w is the charge density, S the surface of the body, and r the vector,

to a point on the surface. The boundary condition yields

E: €••- = (3.2)

A
where E = dielectric constant, n = outward normal to the surface, and

electric flild strength. Using cylindrical coordinates,

ds = P %F1 +dp/dz) 2 do dz (3.3)

where p is a function of z but not of 0 so txLt

IE•• z +p + d E • (3.4)

0 0

From uniqueness and symmetry considerations, we can write

"-IO

;'.•E a anZ) Cos no . (3.5)
4n-O

Then p 0, p=z 0, and

dzp• j d-)2 f do cooB (I a(Z) cosn)

0 00

(3.6)

. rdz p=a(Z) 1 + () IE x idz al(z).

0 0

Apart from the factor a'l(z), the integral is just the volume of the body, V. In

fact. the whole determination of the electric dipole moment resolves itself into
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the determination of the factor a(z) in
4

E = a(z) cos (3.7)

since the other terms i- the series do not contribute. If the body is elongated

along the axis of symmetry (I e. , if I >> p), a' (z) will be a slowly varying

function of z and can be removed from toe integral and replaced by a mean value

(or actually by an estimate of its value). To estimate a(z), we resort to an analogy

with reflection from a plane. In the latter case, the amplitude of the total field is

twice that of the incident field. Thus we choose a = ZE (phase differences in the0

incident field at various points on the body can be neglected) to obtain

A xZcE V. (3.8)

The far zone electric field at a point on the z-axis due to the electric dipole is

(Ref. B-7)

0 A x e (kz-wt)
E= - zx(x•(47T z (9

The form of the magnetic dipole far-zone field is the same as that for the

electric dipole if the electric and magnetic fields are interchanged (Ref. B-Z). The

symmetry o the problem insures that the magnetic dipole is along the y-axis, just

as the electric dipole ie along the x-axis. Consequently, the far-zone fields due to

the two dipoles have the same orientation and phase. If we again resort to a cylinder-

like model for approximation (with the amplitude of the total field &t the surface

twice that of the incident field), It is obvious from the complete symmetry of

occurrence of the electric and magnetic interactions that the two contributions are

equal.

223



Altogether, we have, in the far zone un the z-axis

i(kz --wt)

SEo v e(3.10)E 0

The back-scattering cross section is given by

S4 4 z k4 V (3.11)o-=4ifz 2  E--

lim z-W 0

This, then, is the value of the cross section to be expected for an elongated

body of revolution. As the flatness of the scatterer increases, the approximation

is exTected to get worse, in fact an infinitely flat body (i. e. a disc) has zero volume

but a non-zero cross section. To anticipate the discussion below, for prolate

spheroids the error incurred in the cross section varies from zero for extreme

elongation to 13 per cent for the sphere.

Let us now compare this pseudo-derivation in detail with the exact answer

for the special case we do know, the spheroid (Ref. B-I.) LAt us define for

convenience the quantity

F= - - (3. 12)
I? E 0V

F = 1 yields the magnitude of E given by Equation (3-10). Modifying Rayleigh s

notation slightly,
1 I+21_) _ (3.13)

F= '( J L(2-L)

where for a prolate spheroid, (Ref. B-i),

1 - •ie (3.14'
e 2 e3  1-e

"It should be noted that for the acoustic case the treatment would be equivalent except
that instead of the two components (electric and magnetic) there would be only one,
and thus the cross section would be T = (1/w) ky.
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where e -eccentricity -- i.e. the seni-axes are a, a, a For an elongated

spheroid (e --ý 1) , L --+ 1 and F -+ 1, checking the approximation.

Next, let us inquire into the shape correction by first examining its form

for the spheroid. We already know the prolate result; for t.ie oblate spheroid,

L sin e - (Ref. B-i) (3.15)C 3 e2)

where the semi-axes are now a, a, all-7. As these expressions are quite

complicated, it is profitable to examine their limiting values. Consider a sphere

(e 0): From (3. 14)

log =Z+ + e +... (3.16)

1*e 2 + -e

2 3(3. 17)
S~~~~1 _l. e2- _ e•'+.. -

2 e3 3
e

W (Z. [1=K , § a . (3.18)

It is easily demonstrated that F is monotone decreasing as we progress from

a sphere to an elongated prolate spheroid. Hence, it ranges from 9/8 to 1 -- very

nearly constant, of the form 1 + decaying term.

Examine the disc limit (e -w 1 for oblate spheroid): Let

e = sin x. (3. 19)
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Then

L = cos x csc x (x csc x -Cos x). (3.20)

ety= . -x. (3.21)
4 2

K ~Then u
L= ,iny sec y L -y)secy -sin . (3.22)

Expand near y = 0 (equivalent to e -. 1):

2 7

Lwy i-y) = 2 -Zy= yl- y) (3.23)

I (i+L4 J

+1 1 1 Y+ y). (3.24)i• F= 7r 44
SL(2-L) 7-y(!- y( - Y) r

2

For small y, y It:; if we call the semi-axes a, a, b, then y n_ b/a.

SCombine the information about F. In the oblate case, F is again monotone,

increasing toward the disc limit. The prolate spheroid discussion indicates that

we should split off from F a unity term, and that the remaining term should decay

as b/a -.- cD. Thus we write

I+ + 1Y 1 + -LeY (3.25)

We now postulate that for all spheroids (with semi-axes a, a, b), the shape correc-

tion factor is approximately

F J1+ a (3.25)
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whe~re y bi/a. Nurrierical comparison indicates that the approximation is valid

P Ito within one per cent. The Rayleigh cross section of a spheroid for backscattering

along the axis of symmetry is

Sk4V + 1 e-yJ (3.26)
7r

The cross section of the spheroid depends on its volume and on a correction

factor involving y = b/a. Except for very flat oblate spheroids, the shape correc-

tion factor can be neglected. Where it is not neglected, the shape correction

factor is a simple function of y, which is a measure of the elongation.

The natural extension of the discussion is to postulate that for all bodies

of revolution the Rayleigh cross section for backscattering along the axis of symmetry

can be expressed as
4 2 1 -Y2

kV.(l+--e~') (3.26)

where y is a measure of the elongation (characteristic dimension along the axis of

symmetry)/(characteristic dimension in the perpendicular direction). For elongated

bodies, the term in y drops out and there is no ambiguity. For flattened bodies, the

answer is sensitive to the choice of characteristic dimensions, but a good approxi-

mation should still be attainable. The ambiguity can be eliminated in a number of

cases by imposing a restriction on the choice of characteristic dimensions: in the

limit of extreme flattening, the cross section must tend to the value for the approp-

riate disc.
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Illustration I: Finite Cone

Consider a right circular cone of altitude h and radius of base a. As

h -+ 0, the cross section of the cone must go into the cross section of a disc of

radius r -- i.e., we must have

1 1 , a2h 4 3
VF= -7rah(1+ _" e 7 . a (3.27)

Thus, the appropriate ratio of characteristic dimensions to be used in equation

(3. 26) is

y = h/4a. (3.28)

Hence, the cone has the same cross section as a spheroid of equal volume whose

semi-axes are (a, a, h/4).

Illustration 11: Lens

Consider a symmetrical convex lens of radius of curvature R (the body of
1

revolution obtained by rotating the shaded area in Figure B-1 about the 11 -axis).

In the disc limit (d constant, c - 0),

VFV = 4 d3. (3.29)
7ry 3

Hencr, we take for the lens

3V= 3V (3.30)
47 d 4rR1 sinO

The volume of the lens is

27 3 2

V -3 R,(I- cos 8)(1-cos 8+ sin 0). (3.31)
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As 9 ---- r/2 (sphere limit), we reproduce the pre•vious spheroid result,

as expected.

VC

R,

FIG. B-1: TIIE LENS

Illustration III: Elliptic Ogive

Inasmuch as the circular ogive is more elongated than a sphere, the

argument from the disc limit cannot be applied to it directly.

Instead, we consider the elliptic ogive obtained by rotating the shaded arest

{ of Figure B-2 (a portion of an ellipse) about the il -axis (which is taken pr~ra~lel

I to the minor axis). For this body, in the disc limit (d constant. c 0):

J~~ 4 d3(3 3 )

Iv

VF d (3.32)

t
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In

2a

i--- 2b -I

FIG. B-2: THE ELLIPTIC OGIVE

• !, The equation for the ellipse is

C2-.+= 1 (3.33)
a 2  1

which suggests use of the parameter 6,

sin 0= c/a (3.34)

Then

3V 3 (3.35)
"47rd3 - 4irb (1-cos 0)3

The volame of the elliptic ogive is

2 1

V= Zr ab (sin 0 - O cos 0 - -sin3 0). (3.36)
3

As 0 -r• r/2, we reproduce the previous spheroid result, as expected.

Special Case: Circular Ogive. To obtain the cross section of the circular

ogive, we now merely take the special case of the elliptic ogive with a = b. From

geometry, 0 can then be identified with the ogive half-angle. Now
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! 3 ssn3-Ocos - 3Sy Cos -) (3.37)
!~(1 - cos e):

Illustration IV: Spindle

Consider the body of revolution obtained by rotating the shaded area of

Figure B-3 (bounded by a parabola and a straight line perpendicular to the axis

of the parabola) about the tj -axis. Using the disc limit just as before, we have

3V (3.38)
4 4

where the volume is
V= .. 6 r cdz (3.39)

15

so that

4 c (3.40)
Y- 5 d"

Y1

C

d

FIG. B-3: THE SPINDLE
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Illustration V: Finite Cylinder
' ~Consider a cylinder of radius a and height h. From the disc limit,

S3V 3h (3.41)

4ir a3  4a

By further exploitation of this approach we can go on to obtain the

9 Rayleigh cross section of a body of revolution for arbitrary separation

between transmitter and receiver and for all aspects and all polarizations.

The most direct extension is to replace the body by an equivalent spheroid

and take over the spheroid results. The equivalent spheroid is a spheroid

S1with the same volume and the same elongation factor as the body. The

simplifiet expression found for backscattering along the symmetry axis

provides a reasonable way to arrive at an elongation factor for many bodies.

The logical ultimate extension in the spirit of this approach is to formulate

the Rayleigh scattering of a body of revolution at all aspect combinations

and polarizations in terms of the following parameters only: the volume,

the elongation factor, and the aspect and polarization angles.
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4

THE OPTICS REGION

By the optics region we mean, generally, that region, in wavelength,

wherein the techniques of geometric and physical optics yield good approxima-

tions to the radar cross section of a body. The extent of the optics region

thus depends on the particular body being studied. By the geometric optics

cross section we mean rI R R2 where R Iand R are the principal radii ofcros sctin e man R R2whee 1 2

curvature of the body at the point where a ray is reflected toward the receiver.

We use physical optics (Kirchhoff) theory to denote the scattered far field, and

the cross section thus defined, given by the following expression

ikRn~s -- / 4jr) (A xAl) X e___ dS

illuminated
'area

where H = twice the tangential component of the incident magnetic field,

R = the distance from the integration point to the field point,

ft the unit outward normal to the surface at the integration point,
1kR

and in which the far field approximations for R . are used. That

is, with the receiver at a very great distance from the body and if the body

Is finite we have

7 (e k
Rr 0

where it r + (to. *' ), r the distance from the origin to the field point

233



(receiver), r' the distance from the origin to the integration point on the
scatterer ('/r= the "orresponding vector) and Do = the unit vector directed

?0

from the receiver to the origin.

When the wavelength is small with respect to all of the dimensions

of the scatterer, the geometric optics cross section is an excellent approxima-

tion to the exact result. When a body is infinite in extent, then geometric

optics can be the exact solution. Examples of such exact solutions are the

paraboloid of revolution, when we are considering plane wave illumination along

the axis of symmetry, and the wedge for particular wedge angles and for

particular angles of incidence and polarization.

Let us now consider a body which has one radius of curvature which

is small with respect to the wavelength. In three dimensions we can con-

sider the infinite cone and in two dimensions we can consider the wedge.

By purely dimensional analysis we find that the tip far field behaves like

1/k and the edge in two dimensions behaves like (1/'k)1/2. We find that

physical optics not only predicts these types of k-dependence but also (for

large and small cone angles) that it p-edicts the leading term of a rapidly

convergent expansion in the angle parameter as long as the transmitter or

receiver is on the axis of symmetry.

Kirchhoff theory will give poor results for problems in which the

major contribution to the cross section comes from an edge. For example,

consider the case in which the transmitter and receiver are located at a
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4 ,

point along the f,.ce of a wedge but far from the edge, with Poynting's vector,

P, parallel to the face of the wedge and normal to the edge (see Fig. B-4).V For the E-vector perpendicular to the surface, the exact result is:

a 2 ()- 2= 2-t

2PL 0 2 2P

where the cross section, in two dimensions, Is given by

E 2

a = lim 27r
r r-.+O Et

while the Kirchhoff Answer is zero.

- '0

FIG. B-4: THE WEDGE FOR INCIDENCE ALONG ONE FACE OF THE
WEDGE AND NORMAL TO THE EDGE

This leads one to the realization of why Kirchhoff theory would give poor

results for a finite thin cone. The major contribution to the cross section
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r
in the non-specular directions for small wavelengths comes from the rear

i circular edge. The field, locally, would be like that for a wedge. Thus,K we need to use an improvement O Kirchhoff theory to obtain good cone

answers. We will show this improvement and also how we obtain approximate

results for thin cones in the resonance region. Thus we will show how to

obtain, approximately, a complete cone cross section curve. I
Kirchhoff theory gives excellent first order approximations for bodies

with dimensions large with respect to the wavelength and the results are

too well known to warrant their discussion here.

In the region to which we must give the vague characterization as

lying somewhere between the resonacne region and the optics region there

has been a rapid and fruitful development of new ideas recently.

We begin with the remarkable paper of V. A. Fock (Ref. B-3) in

which he presented a method which we will describe as a local order analysis

cf the field near the shadow boundary. He succeeds in giving the fields on the

diffracting surface near the shadow boundary in terms of one or the othe: of

two "universal" functions according as the incident polarization direction lies

parallel or perpendicular to the shadow curve. Strictly, these are solutions

of the two dimensional (scalar) problems and depend on the radius of curvature

at the shadow boundary and the wavelength of the radiation. These functions are

of the form gf) i e dt

Tr F w'(t) (4.1)
t •t

• 1 e dt
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where 3
wItzt - - z dzW: , •(t) te 3 (4.2)

F71

with the contours shown in Figure B-5.

t-plane z-plane

FIG. B-5: CONTOURS

z
Y

Diffracting Surface

FIG. B-6: GEOMETRY

The arguments used are certain reduced distanees measured from the

237



geometrical shadow boundary, I.e., near the origin as Indicated in Figure

B-6 we have

(4.3)

where R is the radius of curvature and k

These same functions appear in the approximate solutions of specific

problems. There are two which we particularly wish to note. The fields

i induced on a parabolic cylinder (Ref. B-4) and on a circular cylinder (Ref.

B-5) are given, in a sense, by these same functions. These are not

remarkably similar surfaces.

In these examples for the solution continued into the shadow we must

modify the arguments of the universal functions as follows. The motivation

for this stems from the "generalized ray optics" ,f Keller (Ref. B-6). In

place of Equation (4.3) we write

SL kR(s) 3 d (4.4)

0 2 R(s)

where S is path length measured along the surface of the obstacle from the

shadow boundary into the shadow, de is the element of path length, and R (s)

is the radius of curvature at the position s.

Franz and Deppermann (Ref. B-7), however, have given the connection

between the two in uhe concept of "creeping waves". We can meaningfully
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speak of the continuation of the penambra solution into the shadow of the

parabolic cylinder, but in the case of the circular cylinder we find we are

wrapping our solution around the cylinder if we allow the argument of the

universal functions to continue increasing. This latter concept is made

meaningful if we understand the field in the shadow as arising from waves

"launched" at the shadow boundary and "creeping" around the rear and

eventually back to the front, etc. The physical interpretation has been

justified by Friedlander (Ref. B-8) while the underlying mathematical

structure has been illuminated by Wu (Ref. B-9) with his concept of a

universal covering space.

In the following Is given an account of the general procedure. Let

a convex closed surface S, f(x, y, z) = 0 be illuminated by a plane wave

incident in the direction of the x-axis. The geometrical shadow is then

i given by the two equations f(x, y, z) = 0, - = 0. Let the origin be
ax

located at a point on the shadow boundary with the z-axis the outward

directed normal to S and the y-axis chosen to form a right-handed system.

Using the geometric af.iumption that the surface can be approximate& by a

paraboloid at any point, i.e.,

z + 1/2 (ax2 + 2bxy + cy) 0, (4.5)

so that X-_ - ax + by, and the physical assumption that the variation of this
Cx

field in the z-direction is w.',ch larger than that in either the x- or y- dlrec-

tion for sufficiently small A. Fock obtains an approximation to Maxwell's
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equations which leads to the solutions:

0
H --H G()

i 2a 1/3 H°ikx

H 1/3(-) iH e F(•) (4.6)
X k Z

H -0
z

on the surface. The incident field is given by

0 o
H =(0, H, ) (4.7)

0 y z

while the functions G and F have the asymptotic behavior

Ulim G(•)
(4.8)

', lir F( {mF )

where t is a reduced distance from the shadow boundary given by

1/3

(. ) (ax + by). (4.9)
2a

In FPigure B-7 we compare the result using the Fock-Franz method

with the sum of the harmonic series for a circular cylinder (eg., Bailin's

work in Reference 10) with ka = 12. In Figure B-8 we compare the method

with the experimental measurements of Wetzel and Brick (Ref. B-11) on an

elliptic cylinder of ka 12 and kb = 7 5.

240



In the case of the three-dimensional problem of scattering by finite

obstacles we have an additional complication which appears in both the

scalar and vector problems. Since there is a caustic at the rear of the obstacle,

we must take account of the fact that the energy converges on the caustic and,

in fact, the "creeping waves" lose their identity in this region.

This behavior is apparent from the work of Fock (Ref. B-12), Franz

(Ref. D-5) and, mo:e recently, Belkinp and Weinstein (Ref. B-13) and N.

Logan (Ref. B-14) who have given a thorough treatment of this approach for the

L j sphere.

However, Fock theory can be used to determine a partial creeping wave

type field and if we can find another way to handle the partial field due to the

small radii of curvature, we can again obtain good far-field approximations

for moderate values of ka. The value of Fock theory is twofold: (1) when

the wavelength is very small with respect to the characteristic dimensions of

the body, it yields an approximation to the true field in the shadow region

where the Kirchhoff result would predict a zero field, and (2) it is a procedure

which is easily applied to sphere and cylinder problems for moderate values

of ka (ka> 5). One finds upon applying 'his process to spheroids that the

values of ka required in order to obtain good results may be very large.

In the three dimensional problems we see that the sphere solution

with the interpretation of creeping waves and behavior of the caustic serves

as a prototype from which we infer the sobition for other shppes provided the
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Bailin
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K • (in degrees)

FIG. B-7: COMPARISON OF AMPLITUDES FROM EXACT SERIES AND FOCK' S
CURRENT DISTRIBUTION FOR A CIRCULAR CYLINDER WITH

ka =12

242



-' 
s FRIOMP REM I

1.4

1.0 2

1

0,0.8

I 10.6

, iExperimental
.1 Data

0.2

Fock
Theory

9 10 11 12 13 14 15

Distance from Specular Reflection Point (in cm.)

FIG. B-8: COMPARISON OF AMPLITUDES FROM EXPERIMENTAL DATA AND FOCK'S

CURRENT DISTRIBUTION FOR AN ELLIPTIC CYLINDER OF ECCENTRICITY 0. 780 WITH
ka 212 AND kb 7.5
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i iaracteristic parameters are sufficiently large with respect to the wavelength.

For example, a symmetrically illuminated spheroid of large enough dimensions

should be an easy generalization.

Suppose we consider a prolate spheroid in somewhat more detail. Let

the semi-major and semi-minor axes be denoted by a and b re pectively. The

condition we require for the application of the Fock-Franz theory is that

k R . be large where k and R is the minimum radius of curvature,Rmin blagwhrk--) Rmin

R .
min a

As an example of this limitation we note that for a prolate spheroid

of 10 the requirement k R 5 would imply ka> 500. This was

pointed out by Belkina and Weinstein (Ref. B-13).

If we let k R decrease while we keep ka, kb large we approach a

body which is "large" but which has "sharp" ends. We illuminate this object

along the symmetry axis and consider a limited application of our "creeping

wave" theory. Certainly for k Rm <1 the forward tip will scatter more

like an infinite cone than like a sphere of radius b, hence, our theory is not

applicable. In the penumbra region all requirements are met and we feel

justified in making a creeping wave analysis. Granted this, we have launched

a wave which is creeping toward this eff,.i discontinuity, the rcar tip.

Here we must again have recourse to another description and consider the

wave to be reflected from the rear tip and again launched along the surface,

An example of this would be the thin cone radiation problem when the

source is far from the tip (a = distance from tip to source). The Green's
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function for this case is approximated by that for a cylinder and thus rock

theory should give excellent results. If an infinitesimal slot is along a

generatrix of the cone, the Fock answer should be excellent for all ka. If

j one can obtain a tip answer to add to the Fock result, then one can haiidle

all kinds of slots on cones.

We postpone our discussion of the ogive, finite cone, and the spheroid

| approximations (for moderate values of ka} until we reach thp resonance region

Idiscussion of Section 5.

In addition to the Fock theory, small wavelength approximations can

be improved by making use of known results. Just as Artmann, in his solu-

tion for the thick half plane (Ref. B-15), replaced the cylindrical edge with a

polygon, we can obtain an approximation for the thin finite cone by replacing

the cone with a regular pyramid. The base, locally, will be a wedge and to

calculate the field scattered by the cone base, we will add up the fields

scattered by all the wedge-like segments into which the cone base has been

decomposed. We shall consider the cone in some detail, hence It might be

valuable to first present the physical optics approximation.

The problem we shall consider is that of determining the radar cross

section of a thin finite cone when both transmitter and receiver are situated

on the axis of symmetry of the cone in the far zone. We will treat the

case where the wavelength of the incident radiation :a much smaller than

the altitude, zoo and the ba~e radius, a, of the cone. The geometry of the

prob!em is as shown ID Figure B-9.
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(transmitter z a T!

- receiver)

x z0

FIG. B-9: CONE GEOMETRY

We shall also utilize polar variables in the x-y plane as shown in

Figure B -10.

Y

A
p

A

P =x

FIG. B-10 POLAR VARIABLES

The following definitions of radar cross section (of perfect con-

ductors) will be used,

-b 2 .31. 2
u =lim 4ar lim 4s r2  - (4.10)

r r+OD H(4.10)

246



The Kirchhoff (physical optics) expression for the scattered magnetic field

is (Ref. B-16)

Aas k • •+ik r A A A

H L - )- (4.11)
2 r 0 0

where

= n e dS
S/

S,' illuminated area of scatterer

A
n = unit outward normal to S

"r' = position vector of point on S

r• = position vector of field point
Aa= direction of incident magnetic field

"ýo = direction of receiver to origin

= direction of transmitter to origin.

Note. We assume IH = E 1. In this case, the following relations

hold.
n sinax +y +COS C os +I sinl3

x yY

I: (4.12)

; z

idS- z'tan ? dza.

dz I'

Hence

A
0* zi Y 0, (4.13)

0 z4y
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and

A r 0 + Q~
0 0 ne dS

St

which becomes

S2 • 0 -2ikzl

-tan
2 a 2r z' e,~1  dz'W. (4.14)

0 0

The integration with respect to j3 yields

-z° -2ikz'

0 -If 2,r tan2 a 5 z'e dzf (4.15)

0

This integration can also be performed yielding

(-2ikz' i-2z -ZC
AA ta2 aze+ e

0 (2ik)2  21k

0

or

A - 2 +2k 0 o +2o k1
n f--2v tana t e k +. (4.16)

0 L 4k2 21k 4k2

Hence

-u e+Jkr 2 *2k 0 z 2 ikz 1e 2 tan o k 14.17)

r Y 4k 21k

which can be written

a e ik(r + 2z ) r2 -21kz0s2k t2a Ay -i ko-"" (4.18)

2kr tna Y 120 e2 ]0
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-, - -

I 01

2kr y 0

, ÷ik~r(+.1zo

4-lk(r + 2z0 ) 2 Ae 2r - 0O tan a• i2r Y

Now using the definition of radar cross section we have

* =lim 4-r- 2 7 z2 tan4 a
r-+ao H

or
2 2

* =7a tan2 a. (4.20)

We will now approximate the cone with a pyramid and determine the

field scattered by the wedge segments that constitute the base. To illustrate

the technique we will first use the physical optics approximation for the field

scattered by the wedges. We use the Kirchhoff expressions for the scattered

field previously presented where in this case (incidence perpendicular to the

back face of the wedge - see Figure B-11) we have

A A A
n = sint -coso 1

X ti + inf)+Cf

. has no • component, i.e., * 0 (4.21)

i •

d8 dj dt

sin 7
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direction of
incidene/

,' /q
L/

FIG. B-11: WEDGE GEOMETRY

Ae A A

Hence • i a., =0 and

00

L - co +2ik g
0A sin 7 0

Integrating with respect to t and letting ,: -- , we obtain

fOD
S L -2ikE -2iký

n 0 f C d = -L e . (4.23;
So tanY tan 7 21k 10

Associating the edge contribution with the value at the lower limit (just as in

the infinite cone case we obtain the "tip" contribution) we obtain

f •z + . (4.24)
0 2ik tanY

Hence
+ikr

z ,. (4.2'5)
24ir tan y r
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Now i- tting L a 43, where a radius of base, and integrating around the

A
base (a constant vector), we have

2vr
ft 4 eikr ae tikr

H e -- ----- - ad2 - (4.26)

0 47rr tanY 2r tanV

22
a =4wr -

4'ikr 2
r2 -ae A
24r p (4.27)

2r tanY'

2
a

tan2

But 'Y a (see Fig. B-12) where a is half the cone angle; thus,
2

tana =tan(-!" - )
2

ScotI

and finally
2 2

a =r a tan a, (4.28)

which is precisely the nose-on result obtained for the cone directly with

physical optics.

FIG. B-12: DEFINITIONS OF I AND a
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Now we are in a position to employ this technique to obtain a new finite cone

result. We make use of the following expression for the electric field scat-

' tered by an infinite wedge:
S[. 1

, ikr e 4i n 7- 2 E(a) E (b)ý E (a) p+ E(b)P
*•-esin( - ____

2(27r -) 2ir -Y 1
(4.29)

(Ref. B-17) where incidence is in a direction perpendicular to the edge of the

wedge and

i

E (a) =EL component of the incident field perpendicular to the edge of the wedge,
,-• ~E(b) =El component of the incident field parallel to the edge of the wedge,

2
A =cos ( 2 jr 0 ) + cos ( U

2 v - 2 z - Y

2
B 1 -cos (

2," - -f

- = angle of incidence measured from the bisector of the exterior

angle of the wedge, and p and 9 are unit vectors perpendicular and parallel,

respectively, to the edge of the wedge.

This expression is valid for an infinite wedge. In order to obtain an

expression for a wedge of finite edge length, we again look at the current

distribution integrals. We know that the integral over the edge length, will

be, in the two-dimensional case,
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2k r 2 i(kr + -L) (4.30)
e d• fr e

-CD

and, in the three-dimensional case,

2 2
L ik r2 + ikr

* e d • • L e . (4.31)

0

This is the only difference between the two- and three-dimensional problems

so that the three-dimensional fields can be obtained from the two-dimensional

fields by multiplying by

-ri

Le

Thus we obtain, for linear polarization, the following expression for

the scattered field for a wedge of length L:

2\r +~)A A ~
Le__ 2_ _ E(a) b)ýi E(a)p + E~b)Is

sin - .(4. 32)

Again we are really considering the base of a cone and hence

*A _A
P i cosB-i sin

y
A A

+ I sin 16 cos.
x y

A
Ei we recall, is equal to -1, but

AA A= - C eOB + A sin B
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Hence

iEL- cos /3(4.33)

and

E sin (•.

Thus, using these relations for E, E 1 , and A

EL P ~Ej 0 = Cos •+ sin 3) which, in rectangular unit vectors, is

A=-i cos 2 -1 sin 21, (4.34)

and similarly,

Ej P + E1  7 Pcos 13- sin 13, or simply

A-•x. 
(4.35)

Substituting in ls we cbfain

S. s L eAk r / 2 A A
B e2os 21+l sin2

. - •y.+
1r2j -- Y 27 02- ~

S~(4. 36)

As bef.,. •. we set (L =ad$) and integrate over /3 from 0 to 2r, obtaining
for the scattered field from the cone,
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7 aeikr (_ _2 _ _ _x_.-- sin . (4.37)

cone r(27r - 2w-Y) X2. +(Cos12

Cos 2 +) 2k -

New, using the following definition of cr,

Ia = lim, 4Yrr2  9s2r--+OD]•

we obtein remembering that 0 -r/ 2 + 2,
2 1

2sin 2 (2 > __ _

22

4w 3 asi 27 Y
a (i - If)2r2 (4.38)

Sin terms of the cone angle a we have, since• ly a a,

2

_____ 2 ( 4j.2
a 2 cosec ( (4.39)

(37/2 + a)2  31r + 2

This result is compared with the physical optics result in Figure B-13.

The wedge solution must be restricted to cases where the ring singularity is

dominant. As an example, for the cone with ka ýP 1, this obtains for a such

that kz ý> 1. Consider, for example, a cone-cylinder combination viewed
0

nose-on (see Fig. B-14). The expression (4. 37) still applies in this case,

so that since 0 -/2 now, we have
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2a 42 sin 2(2v )1 (4.40)

[ 2a (2v-,Y) 2  
( 2 O 2) 2

In terms of the half cone angle, a, we have since 4 x - 1,

_ _ )
' i a4v2 •+ a

2 2 1 (4.41)
7r a Or a2  ( 2+ a) 2i ' ,lr ct Io + ao ÷-

""/ /( ( Direction

S=_ Incidence

FIG. B-14: CONF-CYLINDER COMBINATION
4

• tDirection

of
Incidence

FIG. B-15: DEFINITION OF WEDGE ANGLE
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Similarly, for the contribution from any ring sirgularity, equation (4. 37)

holds where Y is the included wedge angle (Fig. B-15).

For ka »> 1, kzo ýo I the ring singularity dominates. As kz0 decreases

with ka fixed the ring contribution diverges, approaching the first term of

physical optics asymptotically; hence it is necessary to use physical optics

for kz small, i.e.,

Since the ring and first term physical optics are independent of wavelength

(except for the implicit requirements ka »1, kzo > 1), the graphing of

the complete cross section dependence on cone angle (ka fixed) cannot be

done in any two-dimensional curve without fixing X,

A similar technique of decomposition into straight segments was

employed by Artmann (Ref. B-15) in his solution of the problem of diffrac-

tion by a thick half-plane. He considered a half-plane of thickness 2a

capped by a half-cylinder of radius a, as in Figure B-16. For ka »> I

and incidence as indicated he decomposed the cylindrical portion into a

regular N-gon of length L > X. Then by considering the conditions under

which the rays striking near the apex S be diffracted onto the next side of

the N-gon he determined the size of the penumbra region and hence the shift

in the diffraction pattern as compared with the diffraction pattern of a completely

black screen of like form. In order for rays diffracted from one polygonal

face to have any effect on the next face, the following inequality must hold.
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FI(G. B-16: THICK HALF PLANE
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fac. - n N

n =N -1
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n >

FIG. le-17: N-GON GEOMETRY
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U CosI -Cos ~ (2r. (4.42)

The quantities involved are shown in Figure B-17. To measure the penumbra

width, or in this approximation the number and length of the polygonal sides

that have any effect on succeeding sides, Artmann proceeds as follows. First

he restricts the sides so that the only ones that affect the next one are the last

and next to last where the last side contains the apex and naturally the next

to last side immediately precedes it on the lit side (see Fig. B-17). In order

that this be true

(NN-i)I
kLI cos -cos( 2 12r. (4.43)

From Figure B-i? we see that

(N-i)

C -- (4.44)

Since the next to last face (n = N-i) is not affected by rays from the preceding

face (n = N-2)
_(N-1)

=0.

Substituting these values in equation (4.43), (4.45) yields

kL coso O- I 2 2ir (4.45)

but

cos e Qi- 2-C (4.46
2
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K ' ihence
2

SkL 5t p 21r. (4.47)

"Again referring to Figure B-17 we see that

S(in L (4.48)

2 2a

but

s _ ( ct (4.49)
2 2

hence

Lca a (4.50)

and

ka a •3 4r (4.51)

or 1/3a , (4w (4.52)

ka

Once more referring to Figure B-17 we see that

y =L sin a (4.53)

0

or employing the above results

2 • 2/3
y a a (n, 4) a. (4.54)

0 ka

Hence, reasons Artmann, the diffraction pattern of the thick screen is
~~~~~~~~~4 dsledbthsdsne,(a)2/3

displaced by this distance, T ) a, perpendicular to the direction of
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incidence as compared with the diffraction pattern of a completely black

screen.

The above small wavelength approximations assist us in obtaining

approximate far zone crosG sections for may bodies of revolution. We

must describe what can be done to obtain results in the resc.,aance region.
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5

THE RESONANCE REGION

To obtain answers for prolate spheroids when the radius of curvature

2
at the tip ( k- ) is small with respect to the wavelength and simultaneously

a

when the wavelength is small with respect to the broadsi'je radii of curvature,

a2

b and - , we must use another type of approximation. A point in electro-
b

magnetics is physically a region where all radii of curvature are small with

respect to the wavelengti. Thus the thin prolate spheroid looks very much

Hke an ogive.

The approximate theory used by Belkina for thin apher'ids, .-which sne

compares with her exact answers (Ref. B-18), and that used by Peters (Ref.

B-19) for thin ogives, as one might expect, are for the problem under con-

sideration almost equivalent. Belkina's approxirmatc theory is a special case

of Peters' more general considerations. However, she obtains physical in-

formation from exact theory, not obtained by Peters, on when the approxima-

tion is valid for spheroids.

I For axially symmetric transmission, scatiering from infr.i•e cones is

extremely small in all dLrcctions except the specular direotion. Local analysis

near the front tip and in the penumbra regiou for thin prolate spheroids or

ogives (since the reradiation is tangent to the path) providss no big scattering

effect except in the forward direction. A good portion of energy is guided

towards the rear point and again there is, primarily, n reflection back. The
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back flow of energy coming from the rear tip is again primarily in the forward

direction (flow tolwards the front tip) which is in the direction back towards

where it originally came from. Thus the backscattering near nose-on cross

section of an ogive looks as iI it is primarily due to the tip in the rear. This

has been experimentally checked by Peters (Ref. B-19).

This suggested to Peters and Belkina that the thin body should act like

a traveling wave antenna. Peters derives the results for certain ogives, and

derives the cross section for such an antenna (both monostat~c and bistatic)

for aspects out to 40 off nose-on. The theory would fail exactly nose-on

but provides excellent results for near nose-on aspects.

To illustrate the theory we shall concentrate on a specific example,

the thin prolate spheroid with E polarized field incident., The radar cross

section of a long thin body is given by

2 s Q2  sin U (1 p Cos 0) 2 (x2

'1 Q' 1L- C (O 2 co Qp2 If (

where Q is given by

2 Cin [(kL/pXl+p] - Cin r(kLIpX1 -P)
Q = -42/p) + d3 + -pkL/pl+pl

P 2p3
pL

/ 4

+ (rf4)coe [!kL/pX1-p)J + (p2_1) _kL (Si [(kL/pXitpfJ - St LtkL/p~lpýi
p '

with Ctn(x) being the modified cosine integral of argument x and Si the sine
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integral. We see that fhere are three parameters besides the wavelength

which serve to describe the body. They are the voltage reflection coefficients

"y , the relative phase velocity p, and the length L.

Voltage reflection coefficients of thick ogives and thin rods have been

experimentally determined by Peters who found that for a fairly thick ogive

the reflection coefficient is about 0. 7. For thin rods Peters found that the

voltage reflection coefficient is about 1/ 3. Physical reasoning indicates that

the thin prolate sphero!d, near nose-on, should be compared with a thin rod

rather than an ogive and as a result for a thin prolate spheroid we use a

voltage reflection coefficient of 1/ 3. However, as 0 increases from zero

(the nose-on aspect), the point at which the traveling wave is reflected may

be expected to move around the body and in this case will cause it to enter

a region of larger radius of crvature. Thus we would expect the voltage

reflection coefficient to increase to 1 as the aspect goes to broadside. The

actual values used in the graph (Fig. B-18) are as given in the following

table: . ...

S00 - 4&o 4& - 60o 6& - 750

0.33 0.7 1.0

The relative phase velocity (p) in defined as the ratio of the length

of the body to that of the current path on the body. For this case it turns

out that p = 0. 985.
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As the angle of incidence is increased from zero, a point is ultimately

reached at which the traveling wave theory breaks down and the analogy with

a thin wire is no longer possible. To deal with sbch values of 0 (i. e., near

broadside incidence) an alternative model is required. In this case the body

is likened to a thick cylinder; the thick cylinder results are displayed for as-

pects in the range 9 = 600 to 0 = 90 in Figure B-18. The thick cylinder

results are obtained from Reference B-20.

The excellent, but as yet unpublished, experimental results of J. Lotsof

of the Cornell Aeronautical Laboratory are included in Figure B-18 for the

purpose of comparison. Indeed, it was the existence of this experimental

data which dictated the choice of the dimensions of the spheroid to be used

in this illustrative example.

Before terminating this discussion of traveling wave theory, a few

words about the H polarization case for the same prolate spheroid are in

order. At near nose-on incidence we should expect the same current to be

induced, and thus the same cross section. However, with increasing 0, the

spiralling of the current may be expected to lead to an appreciable reduction

in the cross section; this has been confirmed by the above mentioned ex-

periments.

Now we shall turn our attention to the problem of estimating the

nose-on scattering cross section of thin -finite cones for all values of ka.*

The quantity "a! denotes the radius of the base of the cone and as usualI k =2w/k.
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We need the approximate behavior in the resonance region as we have already

presented small and large wavelength approximations. This is obtained by

assuming that the base is still the dominant feature as the resonance region

is entered from the small wavelength side. The resonance maximum of the

ring singularity would approximate, in both position and amplitude, the last

large maximum of the cone. Since in any physically realizable situation, the

edge of the base of a cone will have a non-zero radius of curvature, b,

(b IX), the only difference between it and a wire loop (wire radius < X)

relative to incident electromagnetic energy is that currents can exist "inside"

the loop but not "inside" the base of the cone.

When one looks at the axially symmetric cross section of a ring as a

function of wavelength, one finds that there are no minima. This then allows

one to predict that the contribution of the inner edge is negligible in comparison

to the outer edge when the wavelength is equal to the order of the loop radius

but greater than the wire radius. (If there were non-negligible contributions

from both the outer and inner edges, then at some wavelengths they would

add in phase and at some wavelengths they would add out of phase. But

there are no noticeable minima in this region!) Thus the cross section of

a loop here looks like a Rayleigh type answer, depending only on the loop

radius but not on the wire radius. This then, gives added Justification for

using an analogy between the conical base and the wire loop. Kouyoumjian's

variational results (Ref. B-21) and Weston's exact results (Ref. B-22) for

wire loops in the resonance region can then be utilized. Their results
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(as a function of wire radius and loop radius) indicate that. the resonant peak

is fairly insensitive to changes in wire radius but that as the wavelength de-

creases the wire radius becomes important. However, when the wavelength

decreases, we use the wedge approximation. There may be a region on the

small wavelength side of the loop maximum where other, smaller in anmplitude,

maxima can occur. These lesser extrema are essentially averaged in this

approximation.

bo On the Rayleigh side, we find that the Rayleigh line, which is an upper

bound on the cross section, lies so close to the ring maximum (in fact may

intersect the ring curve before the maximum) that the existence of any

maxima greater than the ring maximum on the Rayleigh side is precluded.

This is illustrated in the following figure (Fig. B-19) where the experimental

results of S. Silver of the University of California, R. Kell of the Cornell

Aeronautical Laboratory, and M. Ehrlich of the Microwave Radiation Company

have been included for the purpose of comparison.

In order to obtain off-axis finite cone results and to check our assump-

tions concerning the different reflection coefficients at the two ends, we compare

the off-axis results for the cone with the traveling wave antenna result. We

add the Kirchhoff disc contribution to the results for backscattering near rear-on.

These theoretical estimates are compared with the corresponding experimental

data obtained by Ehrlich in Figures B-20 and B-21. We note that the null

Innar the rear-on aspect is theoretically predicted to be too near to the

0
8 180 aspect. This could have been anticipated since we know from the

resonance discussion of the importance of the disc contribution.
2

'• 
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By using approximations based on a creeping wave type picture we

augment the above theory for nose-on results where f(O) = 0. For ogives

of 1/2 angle a, c <200, and ka> 15 (a 1/2 maximum minor dimension)

we obtain a nose-on result of

2 4
X tana + aX

161

When the creeping wave contribution is negligible, then the a_
2

augmentation disappears. This occurs for thick ogives. The above formula

holds for all ogive experiments analyzed to date within a factor of two. A

feeling for when to drop out the can be obtained from known sphere
2

results.

The reader is now in a position to fill in roughly the complete cross

section curves for ogives and spheroids.
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APPENDIX C

CROSS SECTIONS OF CORNER REFLECTORS AND OTHER MULTIPLE
SCATTERERS AT MICROWAVE FREQUENCIES

1

INTRODUCTION AND SUMMARY

If a body is not convex, radiation incident on it may be reflected

a number of times from one part of the body to another before finally

being reflected away from 'he body. These multiple reflections have an

important effect on the radar cross section of a complicated body such

as an airplane. Therefore, the following study of the radar cross sec-

tions of multiple scatterers at short wavelengths has been made. This

paper presents a summary of known data on multiple scatterers, together

with a few new formulas for special cases.

The best known and best understood example of a multiple scatterer

is the corner reflector, which is widely used as a beacon and as a standard

in experimental determinations of cross section. A corner reflector consists

of sec:ions of three mutually orthogonal planes, and has the characteristic

property of giving a large monostatic cross section over a wide range of

directions of incidence,*

A simple approximation to the bistatic cross section of a corner

reflector is given in equations (2. 1. 5) and (2,1. 6). An optical model to

Certain closely related configurations are also commonly referred to as

Scorner reflectors.
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be used in conjunction with equation (2., 1. 5) for determining the monostatic

cross section of a corner reflector is described in Section 2. 2. Explicit

expressions for the monostatic cross sections of square and triangular

corner reflectors are given in Section 2.3. A study of the bistatic cross

section of a square corner reflector witn the transmitter on the axis of

symmetry is made in Section 2. 4. A discussion of the effects of con-

i structional errors, compensation, and truncation is given in Section 2. 5.

When the multiple scatterer has surfaces which are curved, the

i icross section may be obtained by applying equation (2.1. 4). The applica-

tion of this formula involves the geometrical optics approximation to the

fields on the scattering surface and this is given in equation (3. 1. 1). In

the special case when the radii of curvature cf the scattering body are

finite at all of the reflection points the cross section may be obtained by

using equations (3.3.10) and (2.1.3). To illustrate the methods used, the

cross sections of a biconical reflector and of a pair of spheres are obtained

(Sec. 3.2 and 3.4).

A sampling of experimental data on corner reflectors is quoted in

"Section 4. The authors wish to express their appreciation for the kind

i permission of the Bell System Technical Journal to reproduce Figures C-16-

C-20, and of Dr. R. D. O'Neal to reproduce Figures C-14 and C-15 and the

figures In this appendix.
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THE CORNER REFLECTOR*

2. 1 Analytical Method for Determining the Radar Cross Section of the Corner

Reflector

Although the simplest method for obtaining radar cross sections is the

method of geometrical optics (References C-1 and C -2), this method is not directly

applicable to corner reflectors because it predicts that the radar cross section

is infinite in the directions in which radiation is specularly reflected and zero

elsewhere., More explicitly, for a scattering body consisting only of plane

surfaces, geometric optics predicts that the incident radiation is scattered into

a region which, at large distances from the body, subtends a vanishingly small

solid angle. Actually the radiation must be spread by diffraction over a region

of solid angle ()/ h) where X is the wavelength of the radiation .nd h is the

characteristic dimension of the body. Near the body this objection no longer

exists so that geometrical optics can be used to obtain the fields on the surface

of the scatterer when k.gh. When the magnetic field is known on the surface

of a perfectly conducting body the following formula (Reference C-3. page 466)

can be used to obtain the scattered magnetic field at any point in space:

SI kR-H--Hd x ( 2 .1 .I )

Much of the material presente-i in this section appears in Reference C-4.
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where I is the magnetic field on the surface of integration,

Ha is the scattered magnetic field,

An is the outward unit normal to the surface,

k = 2w/ X.

R is the distance between the integration point and Lhe field point.

The integration is performed over the illuminated surface, S', of the body.

When the field point is at a large distance from the body, (2. 1. 1) can

be approximated by

- A ik r 5iP--b
H 46 r dS( (2.1.2)

SI

A
where r is the unit vector from the origin to the field point,

r is the distance from the origon to the field point, und

'is the radius vector from the origin to the integration point.

In this report the radar cross section o is defined as

-b 12
a =lim 4ur. H(H (2.1.3)

where H1 is the incident magnetic field. Throughout this paper 11ij is

taken to be unity. In view of (2.1.2). (2.1.3) can be written :4s

o~ --- _ xH) X 4r e 1t-(21.4)

The integral in (2.1-4) is an elementary one since the surfaces &re

planes and the magnetic field on the surface is obtained by geometric optics.

279



.~~ .....

However, these integrals are usually tedious to evaluate and provide more

information than is required in most applications.

The scattered energy is concentrated in a number of beams, each of

which is centered about a specular reflection direction. Ordinarily the most

important information is the maximum radar cross section for each beam and

the half- power widths of each beam. The evaluation of the part of (2.1.4) that

corresponds to a particular beam gives nearly the same result as would be ob-

tained for diffraction at normal incidence through an aperture having the shapc
4

of the projection of the purt of the corner that reflects rays in the direction

of the beam. Therefore, the maximum radar cross section for each beam is

approximately:

cr =4uA 2  (2.1.5)

where A is the area of the above-mentioned aperture.

The angle 6 • between the beam direction and the direction in which

the radar cross section has decreased by a factor of two is approximately

(Ref. C-4)

S7.50 X/B (21.6)

where B is the radius of- gyration of the aperture taken about an axis through

the center of gravity of the aperture and perpendicular to the plane in which the

deviation from the center of the beam is taken.

2.2 An Optical Model for Corner Reflectors

One of the beams in which the scattered energy is concentrated is

It should be noted that the effective aperture area uted here is not necessarily
the same as the projected area which is tree In a similar formula for the for-
ward scattering cross section.
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reflected back toward the transmitter., The value of A for this beam

determines the monostatic cross section through (2.1. 5). The task of

obtaining A analytically can be avoided by use of an optical model which,

looked at from any direction, presents an aperture whose projected area

is A.,

Such an optical model can be constructed by cutting appropriate

openings in three mutually orthogonal opaque sheets (Ref. C-4 and C-5). For the

corner reflector in Figure C-1, the openings are as shown in Figure C-2. Each

of the three apertures shown in Figure C-2 isobtained by cutting one of the

faces of the corner reflector out of each of the four quadrants so as to

give a symmetrical figure. Figure C-3 shows the optical model consisting

of the three apertures of Figure C-2. An -optical model for any corner re-

flector can be constructed in precisely the same manner.

z

Xj

FIG. C-i: A CORNER REFLECTOR
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FIG. C-2: APERTURES IN OPTICAL MODEL OF CORNER REFLECTOR
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The two views form a stereo pair. A three dimensional effect
may be obtained by focusing the right eye on the right view.
the left eye on the left view, and then superposing the images.
Alternatively a standard stereoscopic viewer may be used.

FIG. C-3: OPTICAL MODEL OF CORNER REFLECTOR

282



2.,3 Monostatic Cross Section of Square and Triangular Corner Reflectors

In Reference C-4, the value of A for the beam reflected towards the

transmitter has been determined analytically for both square and triangular

corner- reflectors (Fig. C-4)..

Square Corner Reflector Triangular Corner Reflector

FIG. C-4- SQUARE AND TRIANGULAR CORNER REFLECTORS

The value of A is expressed most simply in terms of the cosines of

the angles between the axes of the corner reflector and the direction to the

transmitter. If these cosines are • m < n, then A is given by:

For a Square Corner Reflector:

A =4tm b /n , (m </n2)

I A= (4~-') 2. (2.3.1)
A (4- .) /2)

I For a Triangular Corner Reflector-.

• i-A =4 IM +2 .+m a)
1< I m + ,,

m + n (2.3.2)
22A + m +, )b, (+ m n).

2+m +n
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The transmitter direction making equal angles with the three axes

is a symmetry axis for square and triangular corner reflectors. If 6 is the

angle, in degrees, between this symmetry axis and the direction to the trans-

mitter, then, for small 8 , A is given by:

For a Square Comer Reflector:

A- /F3 (1 - 0.0274 6 )b- (2.3,3)

For a Triangular Corner Reflector:

2 2A !--- (1 / /-3 ) (1 - 0. 00076 & )bo (2.3.4)

From these equations and from (2. 1.5) it follows that the dimension-

less quantity a Xý /4brb4 A 2/ b4 depends only on the direction to the trans-

mitter. Curves of constant A 2 /b are plottedin Figure C-5 fr a square corner

reflector using the trilinear coordinates • m2, and n4. As can be seen

from (2.1.5), (2.3.3), and (2.3.4) the maximum values of a for square and4 24 2

triangular corner reflectors are 12 w b /X and 4frb 43 /- respectively.

2.4 Bistatic Cross Section of a Square Corner Reflector for the Symmetric Case

The analytic methods described in Section 2.1 are applicable to both the

monostatic and bistatic cross section problems by a suitable choice of the radius

vector from the body to the field point. To illustrate the procedure for com-

puting the bistatic cross section, consider the case of a square corner reflector

of side length b., The orientation of the transmitter is as indicated in Figure C-6.

The receiver is restricted to the first octant (x > 0, y > 0, z >, 0).
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FIG., C-6: TRANSMITTER ORIENTATION FOR THE SYMMETRIC BISTATIC CASE

When the wavelength of the incident radiation is less than the side

length b, the radar cross section is determined almost entirely by the triply

reflected radiation. Thus to apply (2. 1. 1) it is only necessary to obtain

the magnetic field H for the triply reflected rays. Consider a ray reflected

first from the x-plane, then frrm the y-plane, and finally from the z-plane,

and let the incident magnetic field oe

t =(e c (2.4.1)

AA ek

where a is a unit vector. Suppressing the time factor e * the magnetic field

along the ray going from the y-z plane to the x-z plane is
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I, [rA (A. 1 i
- x e (2.4.2)

I Afwhere ix is the unit vector in the x direction. The magnetic field along

the ray going from the x-z plane to the x-y plane is

: I
•o .', -k + 2 1•.) .

-- •. e (2.4.3)

On the x-yplane r'xix + yi ,so that i r •' 0. If An is a unit vector normal
4 y z

to this surface, then

(A~

n x H =-2 1 a) e (2.4.4)| z

In general, for triply reflected radiation,

A f- A

n x R 2 (n x A) e (2.4.5)

on the scattering surface.

It is still necessary to determine how much of the corner is illu-

minated by such triply reflected radiation,. A consideration of the optical

model shows that the entire corner is illuminated for the transmitter orienta-

tion of Figure C-6. For orientations of the transmitter other than that in Figure
C-6, the corner is not entirely illuminated. However, these orientations present

"aj•i no new problems, since the part of the corner that is illuminated in these

cases may also be found from the optical model.
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From (2.1.4) and (2.4.5) the cross section of the corner reflector is
b b

A A&
4- -I (k - ' + r)- f
4" =(I1 6 x 'a) x r e dxdy

0 0

b b
AA

+ (A X X Ax r e dzdx (2.4.6)

0 0

bb A 2A• Aik ( +,.+
+ I(ix x a) x ý e k dydz

0 0

A A A A _AAaLet r r ix+r k +r Et +FA + GI and A axix + aziz.

In this notation (2.4.6) becomes

b b
Sa 4= - rzxxa + rZay? (rxa + rx a e x+ r) dxdy

. . A -r, y)z] oA0 0 (2.4.7)

b b
A Al f e-ik (Fy + Gz)ra i +ra -(ra +ra e dydz

A A,, -ik (Gz + Ex) 2
+[r ai +r ai -(ra+r a )^I e dzdx t

yzz yxx zz x

0 0

After performing the integration, (2.4.7) becv-mes
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-.

x2 1A -Ikb(E+F) -lkbE -ikbF

r- raI + ra -(rxa + ray)i e -E -e +1

443 L x x x j z EF

rra rzaz e-ikb(F+G) -ikbG -ikbE

+ r~xay iy I+r.xaztz -(ryaY I+ zz i x

(2.4.8)

-akb(G + E) -ikbG -ikbE 2
+ r a +rY a - (rzaz+ra ) -e -e +112.

L ~ y xx Z xx y GE

To simplify (2.4.8), the following condensation symbols are introduced.

cos kb(F+G) - cos kbF - cos kbG - 1

$ 1l FG

- cos kb (G +E) - cos kbG - cos kbE - 1
C 2

GE

cos kb(E +F) - cos kbE - cos kb F - 1

EF

(2.4.9)

sin kb (F + G) - sin kbF - sin kbG

1 FG

sin kb(G+ E) - sin kbG -sin kbE
GE

sin kb(E+ F) -sin kbE - sinkbF
53 U

EF

In this notation, the radar cross section of the square corner reflector for
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the symmetric case is given by

2a - a +r a + rac +

S4ir 3 y z z y x2 zx3

+ r a c -(rxax+ ra ) c2 + r. ac3

42

+ rxc 1 + ryac 2 - (rxa. + ryay) c

! r -z12 (2.4.10)

+ -(r a + r a )s, +ra + rzas]

y Zz A. y x 2 x
-" I'

+ rxas. -(rxa + ra ) a+r 1
y 2 Zx y

+ rxa Z as r sy -(r a x + r y Y ) s3 .

This formula gives the radar cross section for any polarization of the

incident electromagnetic wave. To show how the bistatic radar cross section

varies as a function of receiver position for this symmetric case, (2. 4. 10)

has been plotted in Figures C-8, C-9, C-1qC and C-i1 for a corner reflector

of side length b = 25 cm., for three values of wavelength, and for the incident

magnetic field vector parallel to one of the coordinate surfaces, that is

A AA ix iL

'H 47 fj
The polar a.,'les designating receiver position are indicated in Figure C-7.
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Receiving Antenna

Y

x

FIG. C-7: POLAR ANGLES 3 AND I DESCRIBING RECEIVER POSITION

Figure C-8 shows the variation of a with 'Y for 0 = 54. 740 and for

wavelengths of 3, 10, and 30 cm. The variation of a with A for a wave-

length of 3 cm. andr = 150, 300, and 450 is shown in Figure C-9. The

Y = 450 values were obtained at two degree intervals while the 'I = 150

and 'Y 300 values were obtained at 10 degree intervals. Because the

100 interval is too large to show the variation of a with / accurately,

curves have not been drawn for a wavelength of 10 em. Figures C-10

and C-11 show the variation of a with A for I = 450 and wavelengths of

10 and 30 cm. respectively.

As was noted in Section 2.1, the scattering pattern of a corner

reflector is approximately the same as the diffraction pattern of an equivalent
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AS A FUNCTION OF If
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Sidelength of Reflector 25 cm
Direction of Incidence: along Axis of Symmetry
Incident Magnetic Field Parallel to x - y Plane
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FIG. C-9: BISTATIC RADAR CROSS SECTION OF A SQUARE CORNER REFLECTOR

AS A FUNCTION OF 0 FOR A WAVELENGTH OF 3 CM

293



r 
-- - _---

i 3.5

Sldelength of Reflector 25 cm
Direction of Incidence: along Axis of Symmetry
Incident Magnetic Field Parallel to x - y Plane

3.0 -- i -

a "( 450
00

,. o " = 15
i• 2.5

The Values forO, Z, o, were

obtained from Equation (2.4. 10)

2.01

SO Equation (2. 4. 10)
Equation (2.4. 11)

II

1•>. 5

. /1!
1.0

.5 - - ,

0 10 20 30 4 0 60 70 80 9

0-degrees
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AS A FUNCTION OF 0 FOR A WAVELENGTH OF 30 CM
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aperture. For the symmetric case considered, the diffracting aperture is

hexagonal. For 1' 450, the bistatic radar cross section for this aperture

is

a- 108b 4  2
S4 (sin #rsin 'T/3) (2.4.11)

where

r- sin- cos3.

The values of radar cross section (2.4.11) as predicted by this equivalent

aperture are also plotted in Figures C-9, C-10, and C-11 for comparison

with the values obtained from (2.4. 10). It should be noted that the half-

power widths given by both (2.4. 10) and (2.4. 11) agree with the values

predicted by (2.1.6).

Although the geometric optics and physical optics approximations are

based on the assumption that the wavelength is small compared to the

characteristic dimension of the body, there is reason to believe that the

error introduced by the use of these approximation techniques when b/ X is

approximately one is sometimes much less than an order of magnitude.

Kouyoumjian (Ref. C-6), for example, has found that the monostatic radar

cross section predicted by physical optics for a flat plate at normal incidence

does not deviate from the exact electromagnetic solution by more than a

factor of five for the range b/ X between 0. 8 and 5. Since it in not likely

that exact computations will be made of the cross sections of corner reflectors
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in the near future, and since there is reason to believe that the approxima-

tion techniques do yield order of magnitude answers for the square corner

reflector for A -b, these techniques have been applied for a wavelength of

30 cm. (i.e. t/b =1.2).

Ii

2.5 Effect of Constructional Errors, Compensation, and Truncation.

SI Corner reflectors are generally used to direct a large signal back

toward the transmitter. This large signal is reduced in intensity if the

corner is not perfectly constructed. If the faces of a corner reflector do

0
not meet at exactly 90 then the beam which would have been reflected back

to the transmitter is divided into several beams, none of which, in general,

are directed exactly toward the transmitter. As a result, there will be a

"reduction in signal received at the transmitter. In Reference C-4 the

magnitudes of the errors which reduce the signal returned by square or

triangular corners (Fig. C-4) to one half the maximum returned signal are

calculated. This error, , is measured as follows: If one of the faces

of the corner is rotated about one of the coordinate axes through which it

passes, then L is the distance which the part of the face farthest from the

axis moves. These errors are independent of the size of the corner, and

therefore are difficult to avoid for large corners and small wavelengths.

For Incidence along the axis of symmetry these errors are

Square Corner: one error, A .40)L
4 •three equal errors, A .24 A

Triangular Corner: one error, / .70 A
three equal errors, = .35)A
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For some applications, such as a movable corner used as a beacon,

kit is desirable to sacrifice some of the strength of the returned signal In

order to obtain a usable signal over a wider range of incidence angles on

the corner. This flattening and widening of the monostatic response pattern

can be accomplished by truncation or compensation (Ref. C-5), i. e., the

S1removal of some of the reflecting surface (see Sec. 4).
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3

OTHER M!TLTIPLE SCATTERERS

3.1 Formulas for Scattering from Curved Surfaces: Fock's Method

In Section 2 only scattering from surfaces having infinite radii of

curvature was considered. In this section multiple scattering from surfaces

Shaving finite radii of curvature will be considered. In Reference C-7, for-

mulas are developed for the scattering from curved surfaces. These for-

mulas, which are useful for computing the cross section of bodies with

curved surfaces, are summarized in this section.

The scattered electric and magnetic fields, as given by geometric

optics, are

A A ~x x)] D (Oý) ikr

(3.1.1)

Hs H D-(O) ) e
D(r)

where D(r) is the cross sectional area of a bundle of rays at a distance

r from the specular reflection point, and E1, Hi is the incident field at

the specular reflection point.

The area of the bundle of rays at a distance r is given by

T TU
ISU V

'I D(r) = (3.1.2)
T T
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where TP is the symmetrical tensor
4q

T gPu T +g T (3.1.3)ISq uq vq

and

TPq pq - 9 n +r 0 cos t . (3.1.4)q pq q pqpq

where the summation convention is not being used. Here u and v are curvilinear

coordinates on the scattering surface and gpg is the metric tensor given by

do' guu du? + 2guy du dv + g dv% (3.1.5)

* pq
where da is an element of arc on the surface. The g that appear in (3. 1.3)

are related to the g by

guu gUV• UU U"gvv -guv

v v 
(3.1.6)

vu w g~uugw - guv

g g Lg guu

Gpq is the curvature tensor of the surface given by

an ax any ay 81an
-G = - -- + - - z (3.1.7)

Pq ap aq ap 8q ap aq

where nx, ny. and nz are the components of the unit normal to the surface

at a point x, y, z of the surface. The angle • is the angle between the
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direction of incidence and the normal to the surface. 0l is defined in

terms of the phase of the incident wave on the scattering surface ek •(u v)

n is the ordinary derivative of 17 with respect to p.
p

•p _ .(3.1.8)

ap

11 is the second covariant derivative
pq

S2 p 2 Uv M -. (3.1.9)
Pq p p, Pq au pq av

r P is the Christoffel symbol of the second kind,
qw

rp= gU [c• , w;•uJ + gPv [q, w; v] (3.1.10)
qw

and 1p, q; w1 is the Christoffel symbol of the first kind

(p,;w( ag 8 (w1

2 aq ap aw

3.2 Scattering from Two Spheres

As an example of the application of the formulas in Section 3.1,

consider the backscattering from two spheres of equal radius for an electric

A -ikz
field I e incident perpendicular to the oommon axis of the spheres.
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(Positive x-axis points into the paper)

R1

z

FIG. C-12: REFLECTION GEOMETRY FOR TWO SPHERES

First, consider the doubly reflected ray shown in Figure C-12. For

the reflection from the first sphere the coordinates u and v are

v= 1 (3.2.1)

where 9 and are related to the Cartesian coordinates by

x =-r sin 01 cosI

y = r sin 0 sinO 1 , (3.2.2)0- 1

z =ro cos 81.

The normal on the surface of the sphere is

A A4
,= sine COS 0111 + sincol y*os 61 ?i. (3.2.3)

Thus, by (3.1.7)

G r1 =
G&e Gr 0 r o0
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The square of the element of arc on the sphere is

S2 2 2 2d,2

da r do + r  sin2 1 d 2 (3.2.5)o 1 o 1

so that

g8 Ir 0
go01 go 1 o

go 1 1 1 0 r 2 sin2 1 (3.2.6)

and

16 1

[= 0(3.2.7)

g g 0r sin2  1

The phase factor is

(I1 (810 1) z ro cos 81 (3.2.8)

and the first derivatives of the phase factor are

' 1 o 0 1 (3.2.9)

The Christoffel symbols of the first kind are

I e1 3 8 =- r 2  sin 1

02 1 (3.2.10)

[er" B1 ; 1 6r 01 [e Al. All l[0 1; 0 1 o A 'i 01
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The Christoffel symbols of the second kind are

0
1ii _ sin 0 1 cos 0I1

rFPo10 1 coto1J (3.2.11)

r.11 110 
p i0.

Therefore, by (3.1.9) the second covariant derivatives are

1 io i9 1 0 1
fZ1 0& 1  3 -Q i .2 (3.2.12)

Since 0 1 -V and =1 = -r 0 cos 01 the symmetric tensor (3.1.4) is

1T 9  T n 2 -2R 0 0
11 1

2-2 Ri~ Ir1 (3.2.13)

T T 0 (r 2 _f/2)(1_2 R1 -2 132.3

T0 Pi T ij o 0o1 2

The cross sectional area of a bundle of rays at a distance R from tbs

specu!ar reflection point is 2

T01 1 -2 R 1  0

81 pro

D1 (R1)- T Pi 2R1 Sý (3.2.14)

Sco~s I (oaO 1 + +~h COB- co N

roo

LL
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The electric field (3.1. 1) scattered from the first sphere is

A cos0 1  ik (RI -ro cos OI)- x \1(o ,+2R1 1+2R1 o e .(3.2.15)I. (cos91 + 2 -- )(1+2 -- cos1 }i
ro 

r0

For the ray shown in Figure C-12, 01 1/4 so that the electric fieldI;i incident on the second sphere is

ik(d - r
-1 xe F

°x

(3.2.16)
S(2 42 d -3) J( d 1)

Sr 0r 0

On the second sphere the coordinates u and v are taken to be u2 ='2

and v2 = P2. These coordinates are related to the Cartesian coordinates by

x =r sin 0 2 cos 0 2

y = d + r sin 2 sin 02 (3.2.17)0 2 2

z =-ro cos 02.

The metric and curvature tensors. and the Christoffel symbols, for

the second sphere are obtained from those of the first sphere by replacing

01 and by 02 and

The phase function on the second sphere is given by the simultaneous

equations
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(f/2 -G 1 ) sin2 1 cosp 1 =ro sin cos 2 - ro sin 1 cos

( (2 R 1) sin20. sinj 1  d + ro sin 62 sin 02 - ro0 sin 61 sin•p (3.2.18)

R 2 -0 1 ) cos 201 =-r° cos 02 - ro cos 8V

where in this example 61 0 =-!1,and 2

24 ' 2 2 2

Hence, the phase factor and its derivatives for this example are

o2 r 2 0, (3.2.19)

2 20282 2 22- r2 2

The metric and curvature tensors at 62 = wr/4 and •2 =31I /2 are
2 ro :1

2d- o d r

S 2  r 2(3.2.20)

2 2 2 g8 2 a2 . 0

and "
G6 G 0  0

9 22 202
G G j - . (3.2.21)
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Since 1 -/4, the symmetrical tensor (3.1.4) is
2

2ro 4d - 2 '-12r, o
T T 4d-+2- r o

22 2P2 2 2 F2-d - 3 r 0

2

T 20 2 - + (3.2.22)
02'2 0P2 2  2 1-d ro_

The cross sectional area of the bundle of rays at a distance R2 from the

specular reflection point is

2'72

2 ro 0 2 2 d ro ro F2 d - r°

-t (3.2.23)

Therefore, at a large distance from the scatterer, for the doubly reflected

ray shown in Figure C-12, the scattered electric field is

2 ik(z+d-2 F2 ro)

e A

r- e ix "(3.2.24)

4dz 1 0
lTd

Ir

There is a second doubly reflected ray which gives a contribution equal

to (3.2.24) and there are two singly reflected rays each of which contribute to
0

the backscattered electric field by an amount

,i (1z - 2r%)
-r° e (i. (3.2.25)

2z

In addition there are backscattered rays which are reflected more than twice.
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If the distance between the centers of the spheres is much larger than the

radii of the spheres, the radiation which undergoes more than two reflections

may be neglected and the total reflected field is approximately

2 ik(d-2 JF2"ro)
-21kro ro e ikz

-ro e + 1 z . (3.2.26)

2-d 1

3.3 Formulas for Scattering From Curved Surfaces: The Method of Stationary
Phase

Another technique for finding the scattered fields when the wavelength

is less than a characteristic dimension of the scatterer is the method of

stationary phase. The field associated with a multiply reflected ray, as

given by this method, depends upon the radii of curvature of the body at the

specular reflection points. These radii of curvature are assumed to be finite.

A Cartesian coordinate system is used at each reflection point. The

z-axis is taken along the normal to the surface, and the x- and y-axes are

chosen so that the x and y planes are the principal sections of the surface,

that is sections in which the principle radii of curvature are obtained. In

the vicinity of the reflection points the equations of the surfaces are, approx- t

imately,

z X2  
- (j = 1, 2, 3, ... , N) (3.3.1)

j 2pj 2pj 1 j2

where p j andpj2 are the principle radii of curvature of the j'th surface.
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Let 0 and represent the polar angles at the j'th reflection point, 'r"

Ji

represent the radius vector to a point on the j'th surface from a fixed

arbitrary reference point. Assume the incident magnetic field to be

a e where r is the radius vector from the reference point to an

arbitrary point in space. From equation (2. 1. 1) the field scattered from

the first surface is

H (n x p) x7 e1 ek?, d s (3.3.2)r 2wJ f r r/

and the multipy scattered field reflected from the N surfaces in succession

is

iis nN .S( x[(aN-1x .x** n fl2 x fnlx~ 1  }

(3.3.3)

ex3 r21 r-) 1k'NI e&

XV~ - jJ x *** x7 1 XVeI- e dsl...dsN.

Assume the wavelength to be so short that k r - ';>. For this case

7 e.A A . Or" 2T. (3.3.4)

In the integrand of (3.3.3) all of the quantities except the exponential factor

"309



can be replaced by their values at the specular reflection points. With this

approximation, (3.3. 3) becomes

Y N
2ri R R...R

12 N

(3.3.5)

k[A~b + N

e ,J...fe d .

where

A
r _ R =R_-and7 R RR.

l j 3  Nj rN N N

Let • 1 is 2 = y1' 3= x2, 4 -2' 2 2N- 1 N' •2N = YN'

and expand the phase factor in equation (3.3.5) in the 4 J. The first order

terms will vanish at the specular reflection points, leaving terms of second

order as the leading terms in the expansion. Neglecting all but second order

terms, (3. 3. 5) becomes
A

k % cosl o cos0N 'r R I(2ri) C , __ RN__ N
R N '• (3.3.6)

Dwhere I . e d .. di is a2N-dwensional Fresnel

integral, to is a unit vector giving the polarization of the scattered wave, and
N

Sand M are the matrices
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M =M

cs1  ,20 1 i lm 00 sine psr pnecs0 pop 1

S1 2 R, 2 R R

sin 2 e0 ino CS0 cose1  I sin 2e8 inI sine 0os89 L'I 0 1 sino1 -0121

2 R P1 2  2R I 2RI

sn cs olanelcosp1 -0 si, ne 2coup sine smn0- &121 2ý'2 .(_,201 2 1
2 R, 2 RI p 2 2 X 2R -2LR

21 1 2

s ine inP 2sine icosO I~ sinG sinp am$G sinO1 012
S2 R 1 12 2 2R I kn 2

2R 2R

0 ~~sir ne ?'ssneo ýsp2-*210
2R2

0 0 0 . 0

2
Oin O~inO08a024o0 

% . I.P: N N

1, - R' RN

o o 0 ~PN 2N -

(2.3.6)



In (3.3.8) a is the cosine of the angle between the x and the x axes,

aj 12 is the cosine of the angle between the xj and the yj+ 1 axes, a isj 21

the cosine of the angle between the yj and the xj+1 axes, and aj 22 is the

cosine of the angle between the yj and yj+l axes.

Evaluation of the integral I yields

w;e 2 N) (3.3.9)

Avhere M is the determinant of M. Thus (3.3.6) becomes

AN

A e
H H ( N 3.3. 10')

IMI

When the radii of curvature at the reflection points are finite, equation

i'.(3. 3. 10) is equivalent to equation (3. 1. 1). To illustrate this equivalence,

the method of stationary phase will be applied to the problem of multiple scat-

tering from two spheres treated by Fock's method in Section 3.2. In this

problem

P1 1  P1 2 = P21 = P2 2 =r

R1 d- 42" rto

R z .- (3.3.11)
2 -

9 =0 A
1 2 4

1
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and

aIil =1, a1 1 2  a•12 1  a122 z0,

A , 0 2 - 3i -
2 2

Assuming that d - r- << z, the substitution of (3. 3. 11) into (3. 3.8) gives

(2d - F2 r.) d
IMI 2 (3.3.12)

Bro2(d- '1 r0 )2

~O

The substitution of (3, 3.11) and (3.3.12) into (3.3. 10) gives

2 ik (z + d - 2 12 r0 )
r e

H- H (• 3.3.13)I's N

4d(z ° 1 -

If 2 z >ro equation (3.3. 13) reduces to equation (3.2.26).

3. 4 The Biconical Reflector

In the examples considered thus far the radii of curvature of the

scattering surfaces have either been all finite or all infinite. However,

many problems that arise in practice involve both finite and infinite radii

of curvature. Rather than attempt to give a general formula for all the

cases that might arise, the scattering from a biconical reflector will be

treated to illustrate the appropriate technique. A method of attack for this
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problem has already been given, namely the use of (2. 1-4) with the value of

H in the integrand given by the geometric optics formula (3.1.1). As with

the examples which have already been treated, it is usually advantageous to

make simplifying approximations in the evaluation of the integral appearing in

(2. 1.4). One approximation is to take into account only the current induced

on the scattering surface by the last reflection of a multiply reflected ray.
II

A second approximation is to use stationary phase in evaluating the integral

whenever appropriate. In the following computation only the case of trans-

mitter and receiver along the x-axis is considered (Figure C-13).

z

90 X

FIG. C-13: THE BICONICAL REFLECTOR

The equation of the upper oo..e is

2 y2 2 ()4
x + y = (z + b.1 ).2

while the equation of the lower cone is

2 2 2
X + :-(z - b) (3.4.2)
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Equation (3. 1. 1) can be used to obtain the field reflected from the upper

cone to the lower cone. If the surface coordinates are z and %, then

x =(z + b1 ) cos ,

y =(z + b ) sin •, (3.4.3)

z =Z.

The outward unit normal on the upper cone is

crispJ A ir -_ _ + - 1 1 . (3 .4.1)

4- x Y y 2 z
Applying (3.1. 7) yields

G G 0 0

[z + b1 (3.4.5)G• aG 0 4

The arc element is given by

2 2 2
dc = 2 dz +(z + b) d (3.4.6)

so that

gzz gzO 2 0

= ~(3.4. 7)

g oz g op 0 (z+b1) 2

The inverse of the metric tensor is

[gzz ] 1/2 0

[ Z 0 0 1 (3.4.8)

g (z+bl)2
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The phase factor is

S) (- x - (z+bI) cos ]. (3.4.9)

The derivatives of the phase factor are

z (3.4.10)

'( + b f sindr

The Christoffel symbols of the first kind are

[z. z; z]I = [I z ; PI= [I Z, ; Z] = [P, P; P] , (3.4.11)

[ 0 ; z] I (z + b) Z -

The Christoffel symbols of the second kind are

-z z z¢ 0 -o
r r =F =F = 0

ZZ ZZ z(3.4.12)

2
F - (II2) (z + bl),

z+b

so that

H I :(3.4.13)

n I 0 (1/2) (z+b1) co3

Since cos 1 i • cos 2 / L i '-r
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* ~ 21
Tzz T 2 - coo P (z +b )sinPcosp

T z T0J [(z+b ) sin 0 cos, (z+bl)2 cos 2P+R1(z+bl) COS
"~(3.4.14)

TzZ T z" 1 -(1/2)cos 2 (1/2)(z+b ) sin cos0

S2 R1 Cos

T T 0 sinp Cost cos +

z I z+b 1  z + b

where R is the distance from the specular reflection point on the upper cone.
1

Thus

D(R ) =(1/2)cos 0 + 2 cos . (3.4.15)
z + b1  cosA - j

If the magnetic field incident on the upper cone is i e , hen the magnetic

field scattered from the upper cone is

(s co 2 A A eik[R, _(z+bl) Cos 0
~j(-sinAcosAix +Cos PIy+sin ) i [ o (3.4.16)

11+ 2 Cos
z+b 1 bI cosp

For 0 = 9 the reflected magnetic field on the surface of the lower cone is

z +b 1  e k(z-b A (3.4.17)

3 z+b,

where z it the height at which the incident ray strikes the upper cone. If
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(3.4.16) is written in terms of the coordinates x', y', z' on thc lower cone

with

x: = (b - ?') cos
1 (3.4.18)

it becomes

b -z' ik -b, - z' +(1G2) _,2 + 0(p4)
e b1 3z' (3.4.19)

where O(X) is a function for which lmr O(x)/x =constant which is neither
X--60

zero nor infinity. If (3.4.19) is used in (2.1.2) and the integration over

is carried out by the method of stationary phase, it is found that the doubly

scattered field at a large distance x is given by

b2 - bb 3/2 '0 (bI+z) (bl+2 2z)

S k~ e - 2bl)- (b 1 +) e lk bi+3z do, dz
Y 27r x I (b +3z)

0 (3.4.20)

k 1 U-i. k(x -2bl) b2 -be bl+ Z

e4e dz.
e2 y xb:2z

0

Integrating the last expression with respect to z gives
3•ri

1 ' -4eik(x:'-2b) 3/
j e x- (b2  - b/ ) 'y (3.4.21)

Therefore, taking into account the radiation reflected from the lower cone to the

upper cone, the radar crone section of the biconical reflector Is
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a - -- --- - - - - -{• ' •i-¸ • q- • -- - - •in

3 22r en -. b - /) 2 (3.4.22)

Numerically, the cross section given by equation (3.4. 22) is in

excellent agreement with experimental results that appear in Reference C-5.
i • Furthermore, the dependence on wavelength is in agreement with Robertson's

' ! experimental results.
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4

EXPERIMENTAL DATA ON MULTIPLE SCATTERERS

5. Many experimental measurements have been made of the radar cross

section of the corner reflector. Of the bodies considered in this paper. data

* are available for square and triangular corrr reflectors (Ref. C-8) and for

4biconical reflectors (Ref. C-5). In addition, the effects of compensation (Sec.

* 2.5) are discussed in detail in Reference C-5. The material in this section

is taken from these two references.

Theoretical curves and experimental points for the backscattering

from square and trii~gular corner reflector? are shown in Figures C-14

and C-15 respectively. The results are plotted so as to be independent of

the size of the corner. The experimental dependence of the cross section on

the size of the reflector is shown In Table C-1 for a square corner reflector.

TABLE C-i

Variation of Cross Section with Corner Side Length b

CX 9. 1 cm)
Vaidue of n in

Size of Reflector a -Kbn

6 inch 3.3
2 foot 4.0
3 foot 3.8
4 foot 3.8

A one foot corner reflector was used to obtain the constant K. For the 6 inch
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reflector, whose dimension.s are of the same order of magnitude as the wave-

length of the incident radiation, the cross section deviated from that predicted

by physical optics by a factor of approximately 1.6. The discrepancies between

physical optics theory and experiment for the 3 and 4 foot reflectors can be

attributed to non-perpendicularity of the reflector sides.

Compensation, i.e., reduction of scattering surfaces, can be used to

widen the response pattern of a corner reflector (Sec. 2.5). The response

pattern of the compensated triangular reflector, shown in Figure C-16, is

compared with the response pattern from an uncompensated reflector of the

same dimensions in Figure C-17. A special case of the compensated corner

reflector is the corner which has been modified so as to yield a minimum

response along the axis of symmetry (which usually yields the maximum re-

sponse). The response pattern from this corner (Fig. C-18) is shown in

Figure C-19.

The response pattern from a biconical reflector is shown in FIgure

C-20. This response pattern is independent of azimuth since the biconical

reflector is axially symmetric.

In conclusion it is felt that the profusion of multiple scatterers and the

widespread use of corner reflectors warrants theoretical investigations, even though

the corner reflector may be a poorer standard than the sphere since ita exact

solution is not known. It is shown here that when X < h the cross section of

these bodies can be predicted within an order of magnitude.

321

A



1.1 -1--

Great Circle Arc

1.0

Direction of Incident Ray " t \

.9 -_ _

I r

.8 I _,__ ____

.7 
0

~l=35
= 380

.6 =' 259
=r 45 0

"N =' 270
.5 018O_0

=1540

.4 _

E~fxperimental.
S~.3 ----- Theoretical --

A =Equivelent Flat
SPlate Area I

0
0 5 10 15 20 25 ,30 35

- degrees

FIG. C-14: RELATIVE INTENSITY Or REFLECTION FROM
SQUARE CORNER REFLECTOR

322

L ,



-~Gea Cicl Arc-- -

1.0 -

I ~ - _- ---.9

GreoeatircaleA

.I 0

I- 450

~~~~,~1 08- 
- -- _ _ _ _-

.354

0-

0 5 10 15 20 25 30 35 40

-degrees

FTG. C -15: RELATIVE INTENSITY OF REFLECTION FROM
TRIANGULAR~ CORNER REFLECTOR

3213



-I -

Axis of Symmetry

To Radar

I, AspectO 0 , 09 OP

Shaded Region Represents
Effective Area A

(b)

Aspýct e 30P, O

"FIG. C-16: COMPENSATED TRIANGULAR CORNER REFLECTOR

324

............................................



60 60"

40 ... . . . . .. - -_ _.4 0 -

20 .. j .

0 -1 . - _ - I

-60 -40 -20 0 20 40 30 -60 -40 -20 0 20 40 60

60 - ".oo 6-° --

40 - -40

20" --n

0 z-3&O 10',0 .__:.f O]0 , I I ---

-60-40-20 0 20 40 60 -60-40-20 0 20 40 60

60 - I60-

tlzf
420 - 4

;-- E t ioo z -2o°S0 i0 . 1 , , i. ..

-60 -40 -20 0 20 40 60 -60 -40 -20 0 20 40 60

60 60-

A =-30P40 - o.L I 0

-60 -40 -20 0 20 40 60 -60-40 -20 0 20 40 60
9 in Degrees

Compensated Reflector
Uncompensated Reflector ------

FIG. C-17: REFLECTION CHARACTERISTICS OF COMPENSATED
TRIANGULAR CORNER REULECTOR

325

Lw



Aspect 00. P =
Effective Area, A 0

Aspect6=3e0.

Shaded Region Represents Effective Area A

FIG. C-18: SPECIALLY COMPENSATED TRIANGULAR CORNER REFLECTOR
DESIGNED TO PRODUCE MINIMUM BACKSCATTERING ALONG AXIS OF SYMMETRY

326

Of

tA



If'
I ~ ~~60-... .

[ 1 40 
Experlimental CurvesDti

20 -i Too0___Extrapolation of erimental

-60 -40 -20 0 20 40 60

60 6

40 40-.

S20 20 =

0 otJLJl 0
-60 -40 -20 0 20 40 60 -f0 -40 -20 0 20 40 6G

0
c~60o1 --- 60---

40 40 40-1

20 2 -A 20 I

0 - ...- __
-30 -40 -20 0 20 40 60 -60 -40 -20 0 20 40 60

8 in dkgrees

F!G. C-18: RESPONSE PATTERN OF CORNER REFLECTOR DFOIGNED
FOR MINMUM ECHO ON TPE AXIS

327

LL~



I;
ttec

50"F14iG. C9 0 . EP U E P T E( F I O I A E L C O

328

7 30

10

-50 -40 -30 -20 -10 0 10 20 30 40 50

0 0°

•. FIG. C-20. RESPONSE PATTERN OF BICONICAL REFLECTOR

.328



- - I. ... ... .... . . ..

, 7REFERENCES
C-1. R. K. Luneberg, "Mathematical Theory of Optics", Brown University,

Providence, R. I. (1944).

C-2. N. Arley, "A Note on the Foundations of Geometrical Optics", Det.
SlD anske Videnskabernes Selskab. Matematisk - fvsiske Meddelsert.
Vol. 22, No. 8, (1945-46).

C-3. J. A. Stratton, Electromagnetic Theory, McGraw-Hill, New York,
1 (1941).

C-4. R. C. Spencer, "Optical Theory of the Corner Reflector", MIT
Radiation Laboratory. (1944). ATI-5763.

C-5. S. D. Robertson, "Targets for Microwave Radar Navigation", Bell
System Technical Journal, 26, 852, (1947).

C-6. "Symposium on Microwave Optics", Eaton Electronics Research
Laboratory, McGill University. (June 1953).

C 0-7. V. A. Fock, "Generalization of the Reflection Formulae to the Case
of Reflection of an Arbitrary Wave from a Surface of Arbitrary Form",
Zhunral Ekspe2imental' noi i Teoreticheskoi Fiziki, 20, 961, (1950).

C-8. R. D. O'Neal, "The Application of Corner Reflectors to Radar (Experi-
mental)", M.I.T. Radiation Laboratory (1 July 1943).

329



APPENDIX D

MONOSTATIC RADAR CROSS SECTION OF THE ELLIPTICALI CORNER REFLECTOR*

S~1

LNTRODU CTION

As discussed in Appendix C the monostatic radar cross section of a

corner reflector is given by

S~4w A2

S• -, (1.1)

bL1 which A is the area of ,he projection of an equivalent aperture on a plane

Snormal to the direction of incidence. A convenient aperture, as described in

Appendix C may be constructed by cutting out of each of the four quadrants

of each coordinate plane an aperture of the same shape as the leaf of the

corner reflector associated with that plane. Thls A will be determined here

for the elliptical corner reflector, a shape frequently employed in asy8mmetric

and limited volumes; as a special case, the area A will also be given for the

circular corner reflector. Only tripiy-reflected radiation will be considered.

Appendix D (Unclassified) of The University of Michigan Report "Studie3 in Radar
Cross Sections XVMII - Airborne Passive Measures and Countermeasures", by
K. M. Siegel, M. L. Barasch, J. W. Crispin, R. F. Goodrich, A. H. Halpin,
A. L. Maffett, W. C. Orthwein, C. E. Schensted. and C. J. Titus (2260-29-F,
Jeanuary 1956). SECRET.
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2

PROJECTION OF THE FQUIVALENT APERTURE

The area A will be a function of e/a, w//b. and n/c, where i, m,

and ni are the direction cosines of the li.np-of-sigbt with the three coordinate

axes, and a, b, c the edge-lengths of the ellipses along these axes. Because

'[ of the sym.netry of the optical model, it is necessary to consider only the

range of parameters

F/a > m/b >n/c, (2.1)

where 1 , m, n > 0. (2.2)

The coordinate system may then be chosen in accordance with equation

(2. 1). Because of the invariance of the optical mold under reflections in the

coordinate planes, a righ-.hand~d system may always be chosen.

Considtr the corner reflector of Figure D-1.
z

-- Ic

-Y

X

FIG. D-1 OREENTATION OF CORNER REFLECTOR

The equations of the three ellipses are
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x2a2 + y2 /b 2  1

2/a2 z22/ 2 (2.3)

2/b2+ z2 /c 2 z 1

Project these curves onto the X-Y plane along the line-of-sight, or

S(2 m, n) direction. These equations of these projected curves are

x2/a 2 + y2/b2 = 2

x2 2. 2 2 c n2 a2 " a (4 2xxy + y =a (2.4)
m m 2c2

m2 c2 + n2b2

.12 c2 - -xy + y=b

The area common to the three curves is to bL determined, and then projected

onto the plane normal to the line-of-sight. A is therefore the common area in

the X-Y plane multiplied by n, the cosine uf the angle between the normals to

the two planes.

The procedure is simplified by an additional projection which tranbiorms

the first ellipse into a circle. If b < a, tbe projection introduces the transforma-
qC

tion

x' zcos' :x a (2.5)

where Ui is the projecting angle. If b > a, use

y' =y Cos x =y a (2.6)

Either of these will lead to Lhe same final result for A. The first is employed.
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Equation (2.4) then becomes (dropping the primes on x and y)

x2 + y2 =b 2

x2 _2 xy+y 2  [tbc + + 2 a2 L2  b 2  (2.7)

ma m2 a2 c2 j

m 2 a2 c 2 + 112a2 b2  2 m a

C 2 b2 c2 m xy + b2.

The area common to these three curves must be found, and multiplied by na/b

to yield A.
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3

THE INTERSECTIONS, SEMI-AXES, AND ORIENTATIONS OF THE CURVES

Using the condensation symbols

'.•. L =t2 b 2c20 M r m2a2c2 N =n2a2 b (3.1)

Equations (2. 7) become

(a) x2 + y2 =-b2

2 L xy + L+N 2 =b2(b)x 2- y b(3.2)

(c) M+N x2 -2 xy + y2 = b2.
L An

The intersection points of these three curves are displayed in Table D-2

the key to which is Table D-1. In each block, the upper intersection is en-

countered first in a counter-clockwise circuit.

TABLE D-1

NOMENCLATURE fOR INTERSECTION POINTS

1. 2 3

El

B F

2 D
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TABLE D-2

LOCATION OF INTERSECTION POINTS

0 = 0 0
2

2

p =b p =b

:1 tan8 0 tar) 0
L -M+N

pb b-V--N N
L-(M+N) ta :-!L
Ltan0- 2 L-M+NJ

-2 b (L+M)(L M)2 +2N(L-M)2 +N2(L+M)

N (L-M)2 +2N(L+M)+N 2

It follows from the inequality Cequation (2.1)] which may be written

L >t M >.N (3.3)

that the intersection points are ordered in the following fashion:

TABLE D-3

ORDERING OF INTERSECTION POINTS

Case 1 L < M + N

Quadrant 1 2 3

Point: P G I C BE K B H J D F L
P. b a >b b b <b b b )b b b <b
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TABLE D-3 (Continued)

Case 2 L > M + N

Quadrant 1 2 3 4

Point: P K I C E G 1B L J D1H
SP: i bb b p b b >b 'pL b b b

The curves may, therefore, be drawn as shown in Figures D-2 and D-3.

Now the area of a sector of an ellipse of semi-major axis r and semi-minor

axis s between the angles a and ý is given by

Area = -Ls arctan ( r tanP] (3.4)2 s

The semi-axes and orientation of the semi-major axes in our coordinate system

must therefore be obtained. For the circle, of course,

r =s =b; (3.5)

for ellipse (b) of equation (3. 2)

a 2 b2Mr =1_.3.6)
2s L+N+ M T "•(L,+N4-.V? + 4LM

for ellipse (c) 22 2b bL

r -2 = _ (3.7)

2s L+N+M:F V(L-M-N)2 + 4ML

r" The angle between the semi-major axes of ellipse (b) and the x-Wxis is the

first quadrant root of
:. I -1 2 ___

e =:- ta L . (3.8)22 L+N -M'
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FIG. D-3: FOUR-SIDED AREA FOR L > M + N
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The similar quantity for ellipse (c) is given by the first quadrant root

of
-- tan -13.NrM)

3 2 L-M-N

The final expressions for A, the shaded areas in Figare D-3 may also be

given. They are, for L <M + N:

-2 ¶'i--•tan~ K-

A --nab (C-G) +nab J-- arctan +
N L+M+N -'(L-M+N)2 +4LM C-0 2

(3.10)
2 VN tan• H-03

nab - a-• rctan

L+M+N -V (L-M-N)2 + 4LM K-0
3

for L > M+N:

A :nab(C-P)+nab,-i/Narctan (2 V taj .)B-9 2

L+M+N - L-M+N) + 4LM C-0 2

(3.11)

When the values of P, B, C, G, H, and K from Tables D-I and D-2 and

th -xpressions for 0 and 0 from equationE (3.8) and (3.9) are utilized in2 3

equ =ons (3.10) and (3.11), these expressions for the common area become:

L> M+N,.--- -- iftan- + N/Ntan 1  ;
bc -N L+N-MJ

(3.12)
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2 • 2 2

Sa = ta~n1 (M +N) -L

LMN, ~-FL (tan..2 + V-an-1 _(L +) M )

(3.13)

(L+M) - N

We may simplify the form of these eq'.ations by making use of the

$ Eymmetric functions

S -(L+M+N)

2
T LMN.

Then we have

L•MN,, 1i-t \SN/- S1,.-M+ Z, A + i tan S-M (3.14)

L : , v+N, A ,,-- tn(S(S -,L)\ +-, FMt,-1, (ss-,M) +
LT (3.15)

This form is the easiest for nume• ical computation.
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DISCUSSION OF RESULTS

It is to be noted that for the transition point L =M +N, G =P 0

and E = B = H = w, so that ecuations (3.12) and (3.13) become identical,

as they should.

Further, the transition point correspords to that of 2 = 1/2 for

a circular retlectur. For a circular corner reflector of edge !engtb R.

equations (3.12) and (3.13) reduee to

m2 -L , -L = -' 21 n + n tan- ( 21__ (4.1)
I ý 2' R2 ( 1 -2n2 / (l12m2 )

e~ ~ 2jA tani ( 1-2 _* ) + mtnI 1 -2m 2 +
2 R2 4 ' 2 zun ( ,1 m2 n

(4.2)

.1-

The values of A/ R for a circular corner reflector of unit radius have

been computed from equations (4.1) and (4. 2). A is plotted as a function of

m2 (or n ) for fixed values oft 2 from 0. 01 to 0.99 in steps of 0. 01 (Fig.D-4

to D-23). Of course, .1 2 ,m? and = I -n may be permuted in any

convenient way in using these graphs. a is determined from the graphs as

X2
S(14.3)
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APPENDIX E

BISTATIC RADARS AND FORWARD SCATTERING*

I -
SUMMARY

The radar cross section results which are least understood by radar

SI experimenters are in the area of forward scattering. It is here that a scat-

4 tering maximum exists when the wavelength is small in respect to the dimen-

sions of the body, and the theorist who wants precise results is most apt to

question another's conclusions. It is here that the experimenter finds he

"observes" th6 incident beam in his results.

New theoretical results for forward scattering are presented, and it

is shown that physical optics results do predict this forward scattering maximum

correctly even for complex shapes.

A paper presented by K. M. Siegel at the IRE meeting in Dayton, Ohio, on
the 13th of May 1958.
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INTRODUCTION

During the early 1950's one of the authors (K. M. Siegel) commenced

an investigation of radars whose transmitters and receivers were separated

by large distances. Other theoretical analyses along these lines were made

by Professor R. V. Pound of Harvard and Professor G. E. Valley of M. LT.,

and excellent work was also performed at McGill University under the direc-

tion of Professor G. A. Woonton. In June 1952, R. E. Machol and the

above author coined the name "bistatic radars" to describe radars of this

type. The name came about because Sir Watson-Watt used the word "mono-

static" to describe his recommendation to put transmitters and receivers in

one place. It was to emphasize the desirability (for certain applications) that

transmitters and receivers be spaced far apart that we decided on the word

"bistatic". Intended applications primarily considered situations where the

target was blown or driven between the transmitter and the receiver. If

the physics of the problem allows it, the positions of the transmitter and

receiver should be chosen so that the target lies exactly on the line joining

I them. Moreover, the method to be used should subtract off the incident field

vectorially. If this can be done then a bistatic radar operating at high micro-

wave frequencies is always better (in the following sense) than a monostatic

radar. It is better because when the wavelength is small in respect to the

363
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dimensions of a target, the forward scattering cross section increases in

direct proportion to increasing frequency while the backscattering cross sec-

"tion of convex targets of major interest remains essentially constant with

increasing frequency. Thus for the spectrum of usual radar interest (that

is, for wavelengths small In respect to the dimensions of the scatterer) the

forward scattering return dominates the convex target's return at all other

aspects.
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FORWARD SCATTERING AND RADAR CROSS SECTIONS OF ARBITRARY

CONVEX SHAPES

For separation angles such that the receiver is not near to, or in,

the shadow region, the leading term of the asymptotic expansion of the exact

electromagnetic cross section for convex shapes is given by the geometric

optics. (For reference to asymptotic expansions pertaining to electromagnetics

one should refer to the many excellent New York University reports on the

subject. )

The radar cross section is defined au

a l(-, 44 r 2  1-EL1. (Ref. E-1) (3.1)

where ES is the scattered field and E is the incident field. For far fields

E Eo e i (6, .),
r

i ikz
E =E e ,

and
a (0, )= 4w 1r (3.2)

The total cross s:ction Is given by two formulas

f = f2 d 'n (Ref. E-2) (3.3)
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a Im f(W) (Ref. E-3) (3.4)
T k

where Lin means "imaginary part", and the argument r refers to forward

scattering (in some references the angle 7r is used to denote backscattering).

The cross section given by geometric optics is wavelength independent.

Let us therefore write the exact cross section aT in the form

a -~G + PQ + higher powers ofX)
T

where G and Q are wavelength independent. If p > 0, then G is the leading term

of the asynptotic expansion at high frequencies. If p = 0, then G and Q can be

combined to form a new G. If p < 0, the limit of a as o-cn is infinite, in
T

violation of the conservation of energy. Thus the leading term of the asymptotic

expansion of the total cross section aT is wavelength independent. Hence from

equation (3. 4)
Im f 1 ) Gk- G

4 2 X

for small )X. This means thAt the leading term in the expansion for the scatter-

ing function f must be either G/ 2X or M/ i) where q- 1 and M is wavelength

independent. In either case the forward scattering cross sectior is such that

a (z~) Ce4
12X

(for small wavelengths). But for receivers not in or near the shadow region

the cross sections are wavelength independent as regards the leading term of
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the asymptotic expansion for small wavelengths and for convex bodies. Thus

for backscattering or for receivers not near or in the shadow region the cross

sections are of higher order (much smaller in magnitude) than the forward

scattering cross sections.

By straight applications of Kirchhoff theory (Ref. E-4) the forward

scattering cross section is 41 A2 / )L2 where A is the area under the curve

•Ag separating the lit region and the shadow region on the body. The method

which is used is equivalent to applying a Maggi transformation to the integral

equation (Ref. E-2) and then evaluating both integrals. Since the Kirchhoff

answer for forward scattering is pure imaginary, we have (from equation

A" (3.4))

f (7) A

This actually turns out to be the correct leading term of the asymptotic

expansion and hence the leading term in the expansion for the total cross

section a is 2A. An analysis proving this fact is presented in ReferenceT

E-5.

The result of a ^' 2A is well known from scattering work in modern
T

physics. The interpretation of the factor 2 is as foilows: the energy scat-

tered in the small angle forward direction is exactly equal to the scattered

- I
through large angles all over, In the short wavelength limit the small angle

forward direction becomes the geometric shadow. The cross section for this

term Is the geometrical cross section A. Hence the total cross section is
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2A in the short wavelength limit. Thus, physical reasoning alone would have

given us that Imi f (O) = A/X and this term is the dominant term in the expres-

sion for f (W) for small X. This same reasoning forces f (W) to be pure im-

aginary to this order and enables us to recognize that the Kirchhoff forward

scattering answer is exact. Nevertheless, the result can be derived from

purely mathematical principles and this is done in Reference E-5.

We shall now attempt to push these results towards wavelengths which

i are almost equal to the maximum size of the scattering object. Asymptotic

theory should not be used in general in such cases and each individual shape

of target has to be considered separately. Let us examine the results for a

sphere.

Hamren (Ref. E-6) has studied scattering by a conducting sphere both

"theoretically and experimentally. He compares (Figure E-1) experimental

values of the scattered field with theoretical points obtained by summing the

Mie series. This is done for a wavelength of 3.2 cm for a sphere of 4.75 X

diameter (i. e., ka Z 14.8, where a is the radius). The measurements and

computations were made at a distance R = 1.5 M from the center of the sphere,

and give the amplitude of the component of the scattered E-field parallel to the

incident field as a function of the angle off axis in the equatorial plane behind

the sphere. His measurements of E are such that the zero degree location

corresponds to true forward scattering. It is interesting to note that his

forward scattered field which he computed yields a cross section differing by

only about seven per cent from the value 41r (Y a2 ,'/),2.
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1Sphere Dia. 4.75 X

I Equatorial Plane R =1. 5 M
_ 0.4Polarization Component

IParallel to Incident Field
One Inch Horn PickupI_ •-%Theoretical

I "Observed
X 3.2 cm

0.1

0

160 120 80 40 0 40 80 120 160

Angle Off Axis (Degrees)

FIG. E-1: AMPLITUDE OF SCATTERED E - FIELD VERSUS ANGLE

The error one can tolerate in calculations determines the smallest

ka that can be used when applying 4 A22 In radar applications an

error of seven per cent is of course negligible. Thus. for a sphere, one

could use much smaller values of ka than 15.

In order to obtain a feeling for forward scattering and the region for

which this type of cross section applies, an example will be given showing
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how to compute the approximate small angle beam width for the sphere. The

total scattering cross section is given by equation (3.3). If the half width of

the small angle beam is denoted by Z/ka, where I is a constant, then

2,r r 2
ra -

T 44i n ddo

0 0

+ 
B 

ir 
a2 sin Oddo,

ka

since, by geometric optics, a = Y R1 R 2 where R11 and R2 are principal

radii of curvature. For a sphere R, -R2 = a, giving a (0, •=r a2 for

0 not within the forward scattering cone. Within this cone the formula

4w A2

k2

has been used. Hence

___r_2 
ka

2 T a cos 0
T

for large angle scattering

T 2

ka
for small angle (or forward) scattering giving

370



OT 2 ka 2 - COS v -cosOr -ka "

By expanding cos 0 about 0 z i and noting that ka is large

a ia 2  21r( a2) 2  12 2 a2 1 2

T 2 X2 2 (ka)2

Hence, the assumption of the beam of half width -j. does not lead to a contra-ka

diction. For the sphere

a T= 2 raaT

so that I = 2, and the small angle beam width is then 4/ka. It should be

noted that this is an apprxotmate answer, since it has been assumed that

the cross seretion changes abruptly at the angle 6 = 1 -
ka
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ILLUSTRATION OF RESULTS FOR AN ARBITRARY SHAPE BY SCALAR THEORY

To illustrate the method used in Reference E-2, S. Stone of The

University of Michigan Radiation Laboratory has applied it to obtaining the

total cross section.

Using Green's Theorem together with the Neumann boundary condition

for the problem, an integral expression for the scattered wave has been

derived in Reference E-2, in terms of the value of the incident wave on the

surface and the appropriate Green's function. In the following discussion =

A
direction of the incident plane wave, n is the outward normal at the surface,

r is the spherical vector from the origin to the field point and r' is the

vector from the origin to the source point. If

ik - r
0=i + 'ka and 0i = e with k= -izk

then according to Green's theorem

- • a--- • •. ')J
S

9k A • L d i' s.

Since -lp 0 at the surface of the scatterer,
bn
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j a' must equal - there, giving

[n an

s -O W s4 (r) -(r an ('r)

~r ... a ' dS
• -:.• + gk e, ') a- -n ;P•

For very short waves we know that the part of the surface for which "

is positive (if the surface is everywhere convex) as in the "shadow", whereasI those parts for which t. i is negative are "illuminated" by the incident

wave. What is meant by "shadow" is that 0. almost completely cancels '

in value as well as in normal derivative there. In the "illuminated" part, on

the other hand, while a 0 s / Bn canc•ls 8 0t / an , t a is approximately

equal to i/I at the surface. Therefore, the scattered wave can be represented

approximately by integrals of the product of the Green's function and the

incident wave, but with different combinations for the two portions of the surface;

+ gk (rr-) •-a- *•i( dS

V+ 1.. S [ r,) 8 (•,1(4.2)
U S" gk an

" *() -L gk r(, VP') d8,
Ia
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' "- .... ur-T I III I . .. . . . . .. .. l- i i ... . . .. .. . " - r --

where the subscript S' indicates integration over the illuminated portion and

the subscript S"indicates integration over the shadow area.II
These two integrands have very different behavior. The first represents

the "reflected wave", the second is the "shadow forming" wave, which is

needed to cancel the incident wave.

' The second integral may be simplified by means of a Maggi transforma-

tion. The vector

(i "b

considered as a function of r', has zero divergence (except when r is on the

surface also). Thus we write

S Sdi• =gk•2 Vi •i 2 g

=4rip (r! • r-r)

and A can be considered to be a curl of a vector B. Using Stokes' theorem,

4w 4w
8

where the line integral of B is along the line which separates the shadow from

the illuminated part of the surface. It follows that the integral does not depend

on the shape of the shadow surface (only on the shape of the shadow line). To
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the degree of approximation represented by equation (4. 1), the shadow forming

wave is the same for all surfaces having the same shadow line.

The first integral in equation (4. 1) cannot be calculated so easily and

for short wavelengths It is usually evaluated by the method of steepest descent.

It will now be shown that this approach predicts the same total cross section

as the Kirchhoff method.

The Green's function

ikR ikr -ik(. r.e e eR r

where the approximation is to take R r- r- (. r) in the phase factor and

•R a r in the amplitude. This is true for large r. The incident wave is
1k 1 r

01 e and for incidence along the z axis, k= tk. On the surface
Sz

r= r, giving -ikr'( A," •')

(ri •1) - e

A AFor forward scattering r = "z so the Green's function becomes

A A

gk e e

Equation (4. 1) may now be written

: 1 i [klC cosa' ikr' e00 )
S, r

• ikr' 4ooaG (Ak!"

- ', dS

+L ~ ikr ur' cose'I (a ikrI cose)

'S

-ikr' cos' (.kr IkrIoo&3)
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This can be found from (4.2) by replacing 3/ an with f • and

(z . r ) by coS 9'

If the indicated operations are performed, the integrand of the first

is found to be zero, while the second integrand is

A ikrA_ e 2ik [-cosO' •'+ sin&'0

This is the vector obtained by thf Maggi transformation. If 17' A is

computed, it is seen to vanish everywhere except when I is on the surface.

The scattered wave is then

+~ ~ ~ ~k C089, A t-I.•- s+' ing, +
rk(r) Zi2k 2- rcsO dS,

4wr S

or
()l rikr Ai e• I _.n dS.
4r r

S

This may be rewritten as

S 4ff r I
A

where A is the projected area, giving

S(-r) = A eik
2w r

Examining this expression it is seen that

fi kA

2w
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and
It

4s- Im f()
T K

2A,

which is the total cross section predicted by the Kirchhoff method. As

previously stated, this is the result "well known" to theoretical physicists

Svorking on scattering problems.

4
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5

CONCLUSIONS

If the wavelength is small compared with the dimensions of the target

and the physical situation is such that one can measure forward scattering

returns, then these bistatic cross sectiou,. are always greater than the mono-

static ones for targets of convex shape. Of course, forward scattering applies

only to positions of the receiver within the forward scattering cone. For flat

shapes (neither concave nor convex) there is one aspect of the body for which

the monostatic cross section equals the forward scattering cross section; at

all other aspects the forward scattering result dominates. But for all convex

shapes the particular bistatic cross sections corresponding to the forward

* scattering direction dominate the scattering pattern.
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APPENDIX F

POWER SPECTRA FOR EXPERIMENTAL DATA

INTRODUCTION

Ij We have observed from the text and the other appendices that the

"radar cross section of a given aircraft or missile is a function of aspect

and wavelength. In practice, however, the observed variation in the cross

section will be a variation with time. This time dependence will be due

naturally to changes in aspect with time, changes in frequency with time, and

. •changes in the relative positions of the scattering surfaces (due to vibration,

etc.) with time.
a-.

It is thus apparent that in the study of the radar reflection

characteristics of a given target one's interest could be directed toward the

time distribution of the amplitudes. In the belief that one may be able to find

something characteristic of the target in this "Line structure" of the return the

method of study becomes a statistical one. A common approach involves the

study of the autocorrelation function and the power spectrum associated with

the time varying quantities. In this appendix and in the following appendix

(Appendix G) we shall illustrate this approach; that is, we illustrate the ap-

proach to follow in performing this statistical study of the unction r(t), the

cross section at time t. In this appendix we shall turn our attention to an

approach used for experimental data and in Appendix G we shall consider a

r : purely theoretical problem.
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POT-

The experimental study involved the determination of the power

spectra and the autocorrelatlon functions from dynamic data; the results of

this study have been reported in References F-1 and F-2. A study such as

this one deals with finite samples while the classical theory is based upon a

j sample of infinite size. A certain amount of arbitrariness is thus involved

when the theory is modified for application to a finite sample. Alternative

definitions of the power spectrum and autocorrelation function have been given

I in the literature (Refs. F-3 and F-4)

I
I Even though the main contribution to the radar cross section of V-2

type missiles usually comes from the fins, the variation in the shapes of the

curves found for missiles with swept-back fins appeared to be as great aa the

variation between these and the curves for missiles with rectangular shaped

fins. In fact, there appeared to be little difference between the spectra found

for missiles and those obtained for a B-57 aircraft (Ref. F-5).

1
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2

THE DEFINITIONS OF THE AUTOCORRELATION FUNCTION, R(T),
AND THE POWER SPECTRUM, S(w), USED IN THE COMPUTATIONS

:, In this section a brief summary of pertinent facts concerning the

usual R('T) and S(u,), the definitions of R(T) and S(w) used in the computations,

the relationship between R(T) and S(w), and one aspect of the significance of

the definitions are presented.

4 When a real random function y(t) is known for all times t from 0 to

0, the autocorrelation function R0() and power spectrum, S• (w), are defined

as T

R(T) = lim 1 f- y(t) y(t + T) dt o (2.1)
T-

and

SO(w) 1m 2 1 A(, T) (2.2)
T*-• T

where
T

A(woT) f y(t) e dt . (2.3)

I 2. Note that

.S.(w)• 0 jR. (T R (0) o (2.4)

and

II

S~o10)-- •-R.olT) cos(wT) d•. (2.5)

0

The last equation Is known as the Wlener-Khinchine Theorem.
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For a random function y(nTo), n 1, ,...,N (that is, for a finite

set of data), the autocorrelation function, R(r, T), and the power spectrum,

SMa), will be defined here by

N-s

R(7 T) =- ± A; y(nTo) y(nTo + T), where 0 < 'r < NT
s N 0 0o

and

R(!Ts' r) = 0 if r, < 0 or 's > NTo (2.6)

where

r= sT a s = 0,1,....N, and S() - F(wT)l
0 T

(2.7)

where

F(u,-T) = T y(nT°) e 0 (2.8)

Note that the summation in R('7s, T) is divided by N, the total number of values

for y(nTo). rather than by N-s. the number of values of y(nT0 ) X y(nTo+ •'s)

in the summation. The reason for this is to preserve the relation

S) t R(STo T) cos(w sTo)- -R(0 8T) (Z.9)

which is the analogue of the Wiener-Khinchine relation. A proof of

equation (2.9) is the following:

- Using the definition of F(t, T) given in equation (2. 8),

t

LI,



J 2 N0N iuj~n-m)T 0
=~w 2T 4 y(nTo) y(mT0 ) e

N n-N
-' To2  ~ £. y(n-A) y r n-s)T] 1eT

oi L 0

N N'

T = 2 L j y(nT) y[ (n-s)T] e 0As~

2T 6=0 n=s

+ LNs y(nT.) [(n-s)T] e0 0

s=-N 0I

N]
T02 N y2 (nT +2 y~T y (ns)T]CSWOOO

-r L- 02 n 0o(os 0 ?

From the definition of RQ7'5 1T)

where

T NT 0

Thus

SO). 4a F(WOT)j - R(o. T) + 2 I R(sT T) cos(weTO)'

from which equation (Z. 9) immediately !oliows.
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One aspect of the significance of the definition of F(w, T) may be

seen from the following considerations. R(Vs,T) and S(w) were computed

(in the missile calculation) according to the above equations, using for y(nTo)

an averaged value of cross section;

Set of Discrete Data M 5 that is, each Y is the average over

six sunvessive values of (r with no

X X X X overlap in neighboring V's. Con-

j X K

sider the Fourier analysis of an

I I ]arbitrary function f(t) which passes

I I through a given set of points f de-

I fined at the times t mm = 0 1l,...,M,

too to0 , A to 6 1to n"O,1,....N, and f(t) Ofor t<to 0 o

and t > t M (The f correspond
N, M+l un'

to the tr values, M+l of these being used to obtain a value rf 7.) The Fourier

transform of f(t) is given by

F(j N, I~ -if Nt ) e~ di t ,

f f(t) e dt Aft)e dt

n~nr
F(•)"= • too - t'nom

the latter expression being valid provided t n t (this insures that•_ ~nM+l n+l, o

the whole integration range be covered).

If

tn, m+l tnmm -- A and tOp -0
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then
t =n(m+i)LA +mA,

andnm

tn+1n(M +10A + (mn+1)A

n-ni-1 -
-i~i

ft f(t) e dt e n,m f f(t' +tn. m)e it

-n~m 0

m -iw [n(M+1)A&+ma]

where tfl+

f n (±) f(t) dt,
t

If further wM~ (<<1

T -iM+1h

and

M + I n, m
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The formal similarity between this expression for F(w) and F(4 T) as defined

in equation (2.8) is apparent. If now f(t) is slowly varying over time intervals

of length A (i.e., f(t) is band limited with wmaximum<< I/A ),then f'f m•

,m••nfm+i that is, ,maybe replaced by fnm in which case fn is

merely the average of the M+l values: f n0,fn, f M" Thus, the defini-

tion of F(w, T) given above and used in the computations gives the power spec-

' trum, for w, < 1i/To (To is the interval over which the data are averaged), of

a function which is zero outside the observawion interval and which passes

through all the points of the data before a'veraging. It is assumed that the

function is band limited with maximum frequency<< i/A 1A is the pulse

repetition period of the radar used in obtaining the original data). In this

-ase, -1/409.75secandTo =6A (M-5).

In actual practice, the following procedure was used:

R('/P = R(s TO) -- N-)• •(nTo) F ((n+s) To)

where values of s used were

s = 0(5)150(25)1250 for S-band

s = 0(5)2CC0(Z5)1Z50 for X-band

These are the values shown on the accompanying list.

Then S(i) for w ý.< 2w was approximated as

2T0S(W)= - a% R(sTo) cos(wsTo)
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where

ao0 =ff 5/25, 5 , s < 145 for S-band
as 5 for

a5 s 195 for X-band

a 8=15 for s = 150 for S-band{ s = 200 for X-band

175 4 s 4 1250 for S-band
as = 25 for 2254 s 4 1250 for X-band

This procedure was used to obtain S(w) for w[2r = 0(. 1)1.0 cycles

per second, for larger values of w, the method must be altered, inasmuch as

taking s at intervals of 25 does not yield sufficient accuracy. In the interest

of economy of time and money, it was decided to return to the basic definition

"of the power spectrum, namely

S(w) 2- 2 F(w.T)
T

Numerically, this means

25T0  22 = T°- I (5nTo) cos(5rTdT + a-5nTo)sin(5nwTo

This is the formula used to obtain S(w) for w/Zwr = 1. 1, 1.2, 1.5, 2.0, 3.0, 4.0,

5.5, 6.0. 6.5, 7.5 cycles per second. To get S(,) for higher values of W would

require taking more than every fifth value of a which was not considered

warranted.
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APPENDIX G

DETERMINATION OF POWER SPECTRA FROM THEORETICAL
ESTIMATES OF TAE RADAR CROSS SECTION

• 1

INTRODUCTION

In Appendix F we have considered a procedure for determining power

spectra from experimental data; here we shall consider the approach one can
A

use in determining the power spectra from theoretically determined values of

the radar cross section. Here we shall consider the case in which the aspect

remains fixed and the frequency changes. As an illustration we shall assume

that the nominal frequency is 425 Mc, the pulse repetition frequency is 300

cycles per second, the pulse length is 6 microseconds, and the frequency scan

rate ig 5 cycles per second. We shall assume that the frequency scan waveform

is sawtooth and we shall restrict our attention to two modes of frequency:

+ 1 0/ and :t 2.5 0/0.

In fact we shall consider two different approaches: one is the spectruff

of the croas sections and the other is the spectrum of the square root of the

cross sections. Section 2 is devoted to the consideration of the first case

and Section 3 is devoted to the consideration of the second.
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2

SPECTRUM OF THE CROSS SECTION

The problem here is to determine the power spectrum of the radar

return from a given aircraft for a specified aspect when the transmitting

radar is both pulsed and frequency-modulated. Since the frequency modulation

sweeps at a rate of 5 cycles per second, harmonics of this frequency are

expected in the return. The importance of these harmonics may be assessed

through the determination of the power spectrum.

The radar cross section, a, has a period of 5 cycles per second by

virtue of its frequency dependence. Since there exists no time axis, in

general, about which a (t) is either even or odd, a (t) should be expanded in

a general Fourier series. Specifically, using the series in complex exponentials,

a (t) is written
OD

C W = n exp(i i On it) (2.1)

where 1 = jý-' and t is measured in seconds.

Determination of the power sepctrum from the constant term through

the first thirty harmonics consists in obtaining ICtj for ± n -- 0, 1, 2 ...... 30.

However, since a (t) is real, it follows that

C n=C and ICn = Cni.

It is therefore sufficient to consider only those cases for which 0 <n.
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For n> 0, the contribution to a (which measures the power return)

at the nth harmonic frequency is given by the series (2. 1) as

ra (w.) = Cnent + C e
-n

But since C = C, this may be written as

at ) ( 2(Re Cn costont - Im C. sin wnt).

It follows from this that the RMS value of a (Wn) is expressible as

a2t = eCncostt] +[ImCnsin tnt]2- Z[ReC. COS nt ImCn sinon t)\l

[2 (Re2 Cn+Im2C)112 = F2 I CnI

Here the symbol KF(t) denotes the time average of F(t) over the period

2w

n For n = 0, a D.C . = Co .C,0 . The ratio of the RMS power in the
D0

n harmonic to the D.C. power level, a useful measure of the effect of

frequency variation on a, may therefore be written

RMSa (Wd)C

a Fi •D.C.

This set of quantities is referred to as the relative power spectrum.
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I

$ The C are given by S~n

1 T

* C: -n a(t) exp(-i lOn t) dt (2.2)

0

SI where T = 0.2 sec. In order to evaluate this integral several approximations

are introduced. It is assumed that the echo pulse is of the same form and

duration as the transmitted one and that the range v, riat!on is not sufficient

to effect a vaiiation In time delay. The return may then be taken as consist-

ing of 6/1 sec. pulses at 300 pulses/sec., and subject to the 5 cycle fre-

quency sweep. Further, it is assumed that this 6/W sec. pulse width is small

enough so that both the operating frequency and the exponential appearing in

the integral for Cn are essentially constant over a single pulse. (See App. C).

The integral over t for C may now be replaced by a sum -f the contri-a

butions from the 60 pulses w'hich occur during the 0. 2 sec. frequency sweep. The

continuous variable t is replaced by tr = (r/ 300) sec., r = 0, 1,..., 59. Each

contribution endures for A tr = 6/1 sec. rather than the infinitesimal dt. Also,

a(t) is replaced by a ( r) where X is given as a function of tr by the saw-

tooth waveform of the frequency modulation. Two modes of operation are

specified, corresponding to frequency excursions of t 1 0/0 and + 2 1/2 0/o

respectively about the 425 Mc nominal operating frequency. Assuming the

sawtooth to start at the low end of the frequency range, the relations between

-Xr and tr are given approximately as follows* (with X given in cm):

IlThe smallness of the frequency sweep permits conversion of frequency linear In
time to wavelength linear in time.
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-.7.721 trcm+71. 3 cm - 1 r rcm + 71.3cm (Mode 1) (2.3)

300

Xr ~ c 1.rm+ 7Z.4 C -7.8 r cm + 72.4cm (Mode 2).

Thus for a given aspect the dependence of a on X, determined

theoretically, is converted into the form a (r) through the application of the

relations of equation (1. 3). From this expression for a (r) we obtain

59

Cn -- 1 tr air) exp(-i 1On -r )

T 300
r=0

where T = 0.2 sec. and Ltr= 614 seconds. Upon the substitution of the numerical

values of T and L tr, this equation reduces to

59

Cn =(3x10 5 ) a (r) exp(-i n r r/30). (2.4)

r=0

The theoretical cross sections of an aircraft or a missile can usually

be expressed in the form

2
a=- A, X'

Equation (2.3) indicates that the wavelength can be expressed in the form

X = Y -Xt =Y(--it)
Y

and that Xt << Y. Thus we miay write

This is, of course, the "average" or "random phase" result. The "relative
phase" result for the theoretical calculation of cross section, which will usually
prove to be of more value in a power spectrum study, is used in Section 3.
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S-i~ii+_zt)

Y Y

and

X>2Y2 - 2XY t.

From the above we obtain

SA-1 A_1IX
I a,( - + A + A Y+A 2 + 2 y2 AX 2A XY) t,

which we shall write in the abbreviated form a = S + Rt. In this analysis

t = r/ 300 (r = 0, 1, ... , 59) and thus upon substitution irto equation (2.4)

we obtain

C = (3x105) S exp(-inrr/30) + R 59 rexp(-inwr/30).

r=0 r=O

(2.5)

For n = 0, it :s readily seen that

C = (3 x 10-5X5.9R + 608).

From page 82 of the "Smithsonian Mathematici• Formulae and Tables of Elliptic

Functions" (1947) we have

N-1$-N oin(N - l/2)x 1 -coo (Nx)r co0 (rx) = 22.6a)
r~l2 sin (I/ 2)x 4sin2%I/2)x

and
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N-i sin (Nx) N cos(N-1/2)x

Sr sin(rx) = _- (2.6b)
r= 4 sin2(1/2)x 2 sin (1/2)x

The application of these relations together with the relation

59
oea 5 exp (-in r-/ 30) =60 Sn, n <60

Sn, 00

"ij S(! o equation 2.5 yields

S6 0 s:n(11.9n7/ 60) 60cos(119nr/60)
n (3x10 5 ) R + i nJ60j; j 0.......

300 2sin(ra r/60) 2sm(ni/60)

(2.7)

Combining equation 2.7 with the above expression for C0 we finally have

CD I IRI cc(n uiGO6)Co 159R+600S1

where

-A 2
S - + A0+ A1Y + A2Y

y 0 1 2

and
AX

y2 1X 2

The applicability of this analysis to the higher harmonics is limited by

the approximation of the integral for Cn by the summnation. However, for n4 30,

the range treated here, the effect is not significant.
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It is of interest to note that the relative power spectra can bei

bounded and that the bound is quite small. To obtain this bound we note

that

A_ 2 A _,
-- + A 2Y +A Y > +A X+ 2YAY)=yf

since 0 <X <'0.5m. Also, we observe that

A
R' 4, -1 + A X + 2A2XY

y2 1 2

from which we obtain

159R + 6008! >ý 1600181I -59 iRI I >, 1600Y -591 f,
and

2 tb• F2 f csc (n•/6o) F2csc (nir/0)
< ~ 4

0 1600 Y - 59 f 366

since Y > 0. 71 m.

Thus since csc(nir/60) decreases monotonically as n goes from 1 to 30,

we obtain

.~l 00387 cee(n w/60)

, . 00387 csc (30 ) =.074.
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3

SPECTRUM OF THE SQUARE ROOT OF THE CROSS SECTION

If one is interested in determining the spectrum of the square root of

the cross section, then the values of VT ICni/ICoj given in the preceding

section should be determined using the expressions

S~T

T C F5 exp(-10in7rt) dt , T = 0.2 see.

0

or, equivalently 1

C = 5 (s exp(-2in7rs) ds. (3.1)

0

In this case, since it will often prove to be more informative, we shall employ

the "relative phase" cross section values of cross section. That is, the cross

section will be written in the form

a e e 2 (3.2)

where

S= the cross section of the Z th scatterer,

= the relative phase angle for the j th scatterer, and

N = the number of scattering surfaces considered in the

I Icalculation

-3.1 Maximum Value of lnl /ICoj a a Function of the Maximum Change in a

The cross section is always such that ifa can be expressed in the form

A (1 + f(s)), where f(s)i . K(1. (3.1.1)
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Litj



This would m.ýan that

: ~A(I -K) <f- <A(1+K)

and that

max x+
ax .I<, _ I (•. 1. 2)• •min K.

LII

"" I

£2 In determ4 .ning the power spectra we have

For n =0 we thus have

1

Co A(l+f(s))ds• A(1 -K), (3.1.4)

I and forn 1 1 1 S~ -i2n jr s

Cn = A f(s) e do (AK (3.1.5)

0

Equations (3. 1.4) and (3. 1. 5) thus lead to an upper bound

F2ICn /IC'I F2 K / (1-F.) (3.1.6)

Using equations (3.1.2) and (3. 1.6) it is possible to determine the

magnitude of this bound as a function of (a x)/(a mi(a this relation is

displayed graphically in Figure G-1. R can readily be noted from Figure G-1

that if ( )/(ain is less than 1.30 then F2 1CnI / ICo will be less

(i than 0. 1.
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3.2 Maximum Value of r2 Ic C / If • As a Function of the Change in Phase Angle

Let f(s) in equation (3.1.1) have the form Kcos(a + B 7s). That is

ju-=A L1 + Kcos(a + Brs)J , K<1 and B>0. (3.2.1)

2 )2
Thus, (amax)/(amin) ) (I + K) /(i -K) . This form for F is chosen since

it approximates the type of variation expected in the aircraft cross sections.

In addition, due to the fact that in most cases in the consideration of aircraft

cross sections the phase angle will change by less than 2r for a 5 0/0 change

in the frequency (about 425 Mc), we shall restrict our attention to the case of

B(2.
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Direct substitution of this expression into equation (3. 1. 3) yields

upon integration

CO =A[1 + 2K sin(Br/2)cos(a+ B)}T (3.2.2)

•C1 =AKei 2, fo r B =2 (.23

and

SAK ia ei(B~r -2nr)_l -ia -i(B~r +,2.n% -
- ,K . 1 e

n 2i B" - 2n~r B" + 2ni

(3.2.4)

for B <.2.

I

C 0 for n>,.2 and B 2.
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